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Biodiversity-ecosystem function in a willow biomass production
system
Abstract

The relationship between biodiversity and ecosystem function is an important is-

sue in ecology. Stands of Salix (willow) are suitable model systems to study this

relationship. Salix and other crops are mainly grown in monoculture in agricultural

systems. Species or genotypes grown in monoculture share the same functional traits

and can therefore be expected to compete strongly for resources. In contrast, differ-

ent species or genotypes grown in mixed culture vary in their functional traits and

may use different niches, leading to reduced competition. Thus, higher diversity

in functional traits can increase ecosystem functions such as productivity and litter

decomposition. This thesis examined how individual Salix genotypes affect commu-

nity shoot biomass, litter decomposition and fungal diversity when grown in pure

and mixed cultures of different genotypes.

Three field sites were established in Central and Northern Europe (Freiburg and

Rostock in Germany, Uppsala in Sweden). Within each location, plots were planted

with pure and mixed communities of four Salix genotypes (‘Björn’, ‘Jorr’, ‘Loden’

and ‘Tora’) that differ in their morphological and functional traits. In addition to

the field study, the two taxonomically and physiologically most distinct genotypes

(‘Loden’ and ‘Tora’) were grown under two different nutrient treatments in pure and

mixed communities in a pot study.

Genotypes exerted different influences on the Salix community in which they

were grown, although there was no general increase in productivity, decomposition

rate or fungal diversity with increasing genetic richness. Among other findings,

one genotype (‘Jorr’) enhanced productivity and litter decomposition when grown

in mixed communities. Another genotype (‘Tora’) had a negative effect on produc-

tivity, litter decomposition and fungal diversity when added to a community. ‘Tora’

benefited from the presence of other genotypes, but under nutrient poor conditions it

performed worse in the presence of a competitor. Litter chemistry differed between

genotypes, and decomposition showed a distinct pattern between sites. Fungal com-

munities were affected by different drivers including leaf chemistry, soil properties

and genotype identity, but not by genetic diversity. The results suggest that the spe-

cific functional trait combinations of individual genotypes affect their response to

mixture as compared to monoculture and that the attributes of individual genotypes

are more important than genetic richness for the ecosystem functions studied here.
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Biodiversitet och ekosystemfunktioner i ett odlingssystem av salix
på jordbruksmark: biomassaproduktion, förnanedbrytning och
svampsamhällen

Sammanfattning
Sambandet mellan biodiversitet och ekosystemfunktioner är en viktig fråga inom

ekologin, och odlingar av salix kan användas som ett modellsystem för att studera

sambanden. Både salix och andra grödor odlas främst i monokultur. Arter eller

genotyper (sorter) som odlas i monokultur delar oftast samma funktionella egen-

skaper, och de enskilda plantorna i beståndet förväntas därför att konkurrera hårt

om resurserna. I motsats till detta kan en blandning av arter eller genotyper (sorter)

variera i sina egenskaper, vilket leder till en minskad konkurrens mellan de enskilda

plantorna i beståndet. Därmed kan en högre diversitet öka ekosystemfunktioner som

biomassaproduktion och förnanedbrytning. Den här avhandlingen undersökte hur

olika sorter av salix påverkade skottbiomassa, förnanedbrytning och svampsamhäl-

lena när sorterna växte antingen i renbestånd eller i blandningar. Tre fältförsök

etablerades i centrala och norra Europa (Freiburg och Rostock i Tyskland, och Upp-

sala i Sverige). På varje lokal planterades både monokulturer och blandade bestånd

av fyra olika sorter av salix (‘Björn’, ‘Jorr’, ‘Loden’ och ‘Tora’), vilka skiljer sig

åt både i morfologi och funktionella egenskaper. Utöver fältförsöken genomfördes

också ett försök i odlingslådor där de två mest olika sorterna (‘Loden’ och ‘Tora’)

odlades i monokultur och blandade, och med två olika växtnäringsbehandlingar.

Inblandning av de olika sorterna påverkade ekosystemprocesserna i bestånden på

olika sätt. Flera sorter av salix, dvs. en ökad diversitet, ledde inte generellt till en

ökad biomassaproduktion, nedbrytning eller svampdiversitet. När sorten ‘Jorr’ var

inblandad i beståndet ökade både produktiviteten och förnanedbrytningen. Sorten

‘Tora’ hade däremot en negativ påverkan på produktivitet, förnanedbrytning och

svampsamhällenas diversitet när den fanns med i blandade bestånd. ‘Tora’ drog

istället fördel av andra sorter i blandade bestånd, men under näringsbegränsade

förhållanden växte den sämre under konkurrens. Förnasammansättningen skilde

mellan olika sorter och nedbrytningen var beroende av vilken plats (t.ex. Uppsala

eller Freiburg) de odlades på. Svampsamhällena påverkades av flera olika faktorer,

som till exempel förnasammansättning, markegenskaper och sortval, men var inte

kopplad till sortmångfalden i beståndet. Resultaten visar på att kombinationen av

specifika funktionella egenskaper i bestånd av salix påverkar hur de samverkar när

de odlas i blandningar jämfört med om de odlas i monokultur. Därför är individuella

sorters egenskaper av större vikt än sortmångfalden för de ekosystemfunktioner som

undersöktes här.
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1 Background

1.1 Biodiversity-ecosystem function

Biodiversity is defined by the number of species or genotypes in an ecosys-

tem. Functions within an ecosystem often increase with species and genetic

diversity, and with similar relative abundance of species (Magurran, 2013;

Srivastava and Vellend, 2005). The functions carried out by ecosystems are

the result of interactions between organisms and their habitat, where func-

tions can refer to ecosystem properties and ecosystem services (Lecerf and

Richardson, 2009). Ecosystem properties can be stocks of energy and mate-

rial (e.g. biomass), fluxes of energy or material processes (e.g. production

and decomposition) and stability of rates (e.g. nitrogen mineralization) or

stocks (e.g. carbon storage) over time (Kinzig et al., 2001). Ecosystem ser-

vices derive from ecosystem properties and can provide products (i.e. food

or biomass for bioenergy) or other benefits such as decomposition of waste,

cleaning of water, and aesthetics to increase human wellbeing. Thus, "the

joint effects of all processes that sustain an ecosystem" are defined as ecosys-

tem functioning (Reiss et al., 2009). Ecosystem functioning is affected by

functional attributes of species or genotypes (their traits) which can locally

alter biotic (e.g., competition, predation) or abiotic factors (e.g., microcli-

mate, disturbance, resource availability) (Chapin et al., 2000; Wood et al.,

2015).

A diverse community differs in productivity (e.g., in terms of biomass

production) and its contribution to ecosystem functions. It can therefore in-

fluence ecosystem properties and processes by increasing ecosystem func-

tioning (according to biodiversity-ecosystem function (BEF) theory). More

specifically, a trait is a measurable feature of an individual that potentially

affects performance or fitness. It can be physical (e.g. plant branching pat-

tern), biochemical (e.g. plant photosynthetic pathway), behavioral (e.g. noc-

turnal or diurnal foraging), temporal or phenological (e.g. flowering time)
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(Cadotte et al., 2011). Thus, functional traits are able to regulate the influ-

ence of species or genotypes on the environment and their response to the

environment, and thereby the fitness of the specie or genotype (Wood et al.,

2015). Ecologists are increasingly interested in trait-based community diver-

sity studies rather than species richness or composition (McGill et al., 2006).

On managed land, ecosystem functioning and ecosystem services are driven

by species or genotypes with different functional traits. Increased diversity

in managed ecosystems can either affect ecosystem services directly, due to

an increase in human nutrition (in terms of nutritious food) (Remans et al.,

2014), or indirectly, through cover crops promoting plant biomass growth and

better water quality (Dabney et al., 2001). A sustainable and multifunctional

agriculture or silviculture system should deliver several ecosystem services.

Aboveground, a sustainable agriculture system should provide yields of food,

fiber and fuel, pollination or disease regulation and pest control, while be-

lowground should supply soil retention, supporting carbon sequestration and

structure, regulation of soil fertility, nutrient cycling and water cycle and qual-

ity. Conservation of biodiversity and human health also plays an important

role in a sustainable, multifunctional us of land (Power, 2010; Zhang et al.,

2007).

1.1.1 Species and genotype richness

At species level, higher species richness and diversity of traits is frequently

accompanied by higher productivity (BEF theory) (Cardinale et al., 2011;

Duffy et al., 2017; Hooper et al., 2005; Tilman et al., 2014). However, some-

times species or genotype identity can play a more important role than di-

versity per se (Scherer-Lorenzen et al., 2004). Biodiversity-ecosystem func-

tion theory was developed mainly based on model systems such as grassland

(Hautier et al., 2014; Hector, 1999; Isbell et al., 2015; Tilman, 2001) and

forests (Chisholm et al., 2013; Piotto, 2008; Zhang et al., 2012). In experi-

mental plant communities of grassland, total plant biomass has been reported

to either increased with increasing species richness (Hector, 1999; Hector

et al., 2010; Tilman et al., 1996) or to decreased (Gross et al., 2014; Hector

et al., 2010). Apart from species richness, genetic diversity within plants

also plays a significant role in ecosystem functioning (Cianciaruso et al.,

2009; Hughes et al., 2008). Genetic diversity can influence plant produc-

tivity (Cook-Patton et al., 2011; Kotowska et al., 2010), litter decomposition

(Schweitzer et al., 2008), resistance to disturbance (Parker et al., 2010), and

the presence and abundance of soil organisms, aboveground predators or her-

bivory (Chateil et al., 2013; Johnson et al., 2005; Parker et al., 2010; Wimp

et al., 2004). Although biodiversity can be beneficial, e.g. for productivity or
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resistance to disturbances, over the past century species richness and genetic

diversity have been reduced in managed areas to increase productivity. Cur-

rently, most arable fields are cropped with only one genetically homogeneous

cultivated species and the number of different species or genotypes cultivated

in fields is generally declining on a regional and global scale (Bonnin et al.,

2014). In modern arable systems, high-yielding genotypes that are adapted

to intensive management practices are generally being selected. However,

such practices are far from sustainable, as high amounts of fertilizers and

pesticides are used to ensure high yields. In addition, irrigation and inten-

sive management practices tend to degrade soil fertility and the functioning

of non-cultivated, natural ecosystems (Barot et al., 2017). Most modern agri-

cultural systems, with high-yielding genotypes cultivated in monocultures,

are more vulnerable to changes in climate than diverse agricultural systems

(Gaba et al., 2014). In addition, soil tends to be degraded by the intensive

agricultural management practices implemented today. Increased species or

genetic richness in agriculture could promote yield, yield stability and sus-

tainability and/or reduce soil degradation (Altieri, 1999; Gaba et al., 2014;

Kassam et al., 2009).

1.1.2 Diversity effects: The link between genetic diversity and ecosystem func-
tioning

There are two main mechanisms through which species or genotype richness

affects ecosystem functions such as biomass productivity or yield. These

are: the selection (or sampling) effect and the complementarity effect due to

niche differentiation or facilitation (Loreau and Hector, 2001; Tilman et al.,

1997). Positive selection effects occur when a highly productive genotype

dominates the community in terms of space occupancy or biomass, whereby

the community component does not necessarily need to dominate the com-

munity completely, a slight selective advantage could be enough to generate

dominance (Loreau, 2000). The selection effect emerges in space and time as

environmental conditions change between locations (due to soil properties)

and time (years due to climate). Thus the species or genotype with the best

performance is not necessarily the same between locations and years.

Complementarity effects occur when species or genotypes use different

ecological niches or resources in a complementary manner. Thus, comple-

mentarity can promote functional trait variation between species or genotypes

(Loreau, 1998). The specific complementarity effect of niche differentiation,

where co-existing plant species occupy different parts of niche space, can

occur when functionally different species and genotypes use resources in dif-

ferent space and/or time, e.g. due to differences in canopy or root structure
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(Bayer et al., 2013; Craine and Dybzinski, 2013) or differences in the timing

of phenological events such as bud burst or bud set (Weih, 2009). Facili-

tation takes place when one community component enhances the growing

conditions of another community component. This can increase community

productivity when multiple species or genotypes are present, which can lead

to higher production than in their respective monocultures (Loreau, 2000).

Increasing community productivity might be a result of selection effects, as

a community with multiple functional components (plants) is more likely to

contain a well-performing species or genotype at any time. Alternatively,

increasing community productivity can be explained by complementarity ef-

fects, as diverse communities are more likely to use different niches at any

time (Loreau, 2000). In both cases, functional differences between species

or genotypes are crucial to achieve a positive effect on productivity, and thus

increased yield. However, increasing functional differences within a field do

not necessarily result in a positive effect on productivity.

1.1.3 Functional trait diversity and plant competition

In an ecosystem, whether natural or managed, single-species or diverse, there

exists always competition for space, light, water or other resources, e.g. nu-

trients (Lambers et al., 2008). In monocultures, plants usually share the same

functional traits and thus they flower, grow and root at the same time, while

using shared resources. Therefore, competition for resources such as light

or nutrients is usually high. When nutrients are limited, genetically diverse

managed or natural ecosystems with different functional traits develop dif-

ferent strategies to acquire or allocate nutrients and might perform better in

terms of productivity.

In a fertile ecosystem, nutrients are often not limiting, which can lead

to increased plant growth, but also increased competition for light (Tilman,

1990). Successful competitors capture resources rapidly to develop new

leaves and roots, and have a high morphological flexibility (e.g. leaf

morphology, orientation or spatial arrangement) and rapid turnover of leaves

and roots (Aerts, 1999). Fast-growing plants in fertile environments have

roots that allow rapid nutrient uptake and invest in biomass allocation to

shoots and leaves, which can lead to a competitive advantage (Caldwell

et al., 1996; Jackson and Caldwell, 1996; Lambers and Poorter, 1992).

Plants growing rapidly in strongly nutrient-limited ecosystems are often

characterized by slow turnover of leaves, long tissue life span, low leaf

nutrient concentrations, and strong investment in root biomass to access

soil nutrients (Bloom et al., 1985). Thus, higher functional trait diversity

could lead to lower plant competition than found between plants grown in
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monoculture.

1.2 Litter decomposition

Decomposition is a chemical and physical process by which plant litter is

reduced to carbon dioxide (CO2), water and mineral nutrients (Aerts, 1997).

In most terrestrial ecosystems, decomposition is a key process in the nutrient

cycle and plays a significant role in the global carbon budget (Aerts, 1997;

Schimel, 1995). Decomposition is strongly influenced by microbial activity.

Microbes produce enzymes that contribute to decomposition, thereby degra-

dation products such as nutrients becomes available to the microbial popu-

lation. In particular, organically bound nutrients such as nitrogen (N) and

phosphorus (P) can be released through decomposition. Organic phosphorus

can be released by plants or microbial enzymes and plants can take up inor-

ganic phosphorus forms (Lambers et al., 2008). Nitrogen in leaf litter passes

through three different phases: leaching, nitrogen accumulation and nitro-

gen release. Nitrogen leaches from litter directly after trees shed have their

leaves, with the rate of nitrogen release being determined by precipitation or,

even more strongly, by freeze-thaw cycles. While nitrogen is being released

through leaching, fungal biomass can grow into leaf litter and can transport

nitrogen actively into the litter through the presence of mycelium alone (Berg

and Laskowski, 2005). In the nitrogen accumulation phase (also called immo-

bilization), nitrogen transport and the amount of nitrogen in the litter increase,

reaching values higher than the initial nitrogen amount. The transport of ni-

trogen into litter can occur either through N2-fixing microorganisms that are

present in the litter or by fungal hyphae that take up nitrogen from surround-

ing litter, which is more common in temperate and boreal forests (Berg and

Laskowski, 2005). Accumulation of nitrogen in litter depends on the quality

of the litter (nitrogen-poor or nitrogen-rich) and the extent to which nitrogen

is limiting microbial growth. Already during the accumulation phase, nitro-

gen is released in mineral forms (i.e. nitrate (NO3) and ammonium (NH3))

from degrading litter. After soluble compounds (phosphorus, nitrogen and

carbon) are released, degradation of hemicellulose occurs, followed by degra-

dation of cellulose (Berg and Laskowski, 2005). Degradation of one of the

most recalcitrant (resistant or difficult to degrade) substrates, lignin, eventu-

ally comes to dominate when the carbohydrates most easily available to mi-

crobes have been consumed by microbial communities (Berg and Laskowski,

2005). Lignin degradation is performed by microorganisms such as fungi (or

bacteria) that possess specialist enzymatic mechanisms to degrade lignin.
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1.2.1 Factors influencing litter decomposition

Litter decomposition rate is mainly driven by microbial activity. As such, it

depends on environmental conditions such as climate (moisture or tempera-

ture), litter quality (chemical and physical characteristics) and the composi-

tion and abundance of soil biotic communities (Aber and Melillo, 1982; Swift

et al., 1979). The litter decomposition rate of a litter cohort decreases over

time (Aerts, 1997). During the first phase of decomposition, environmental

conditions, especially temperature and moisture, have a strong direct effect

on litter decomposition (Aerts, 1997), followed by litter chemistry and soil

organisms (Lavelle et al., 1993; Swift et al., 1979). However, so far it is un-

clear which of these factors is the main driver of decomposition. On a global

scale, climate and litter quality can affect decomposition (Cornwell et al.,

2008; Djukic et al., 2018; García-Palacios et al., 2013; Parton et al., 2007;

Prescott, 2010; Swift et al., 1979). Decomposition is usually slower in cold,

dry regions than in warm, moist environments such as tropical forests (Parton

et al., 2007). High levels of ultraviolet radiation can also affect decomposition

(Austin and Ballare, 2010). On a local scale, litter quality and traits (such as

leaf toughness, nitrogen and phosphorus content, lignin content, polyphenol

concentrations or carbon (C):N ratio) may be good predictors of litter decom-

position rates (Aerts, 1997; Bakker et al., 2010; Cortez et al., 2007; Güsewell

and Verhoeven, 2006). Nutrient-rich litter with high concentrations of ni-

trogen, phosphorus and carbohydrates decomposes faster than nutrient-poor,

‘low-quality’ litter, which tends to contain higher concentrations of complex

and more recalcitrant compounds such as lignin, tannins or phenolics (Berg

and McClaugherty, 2008). Soil fauna also play an important role in litter

decomposition and may be equally important to litter quality. The effect of

soil fauna on the rate of decomposition is driven in turn by climate and lit-

ter quality (García-Palacios et al., 2013). Hence, the relative composition

and relative abundance of soil fauna such as earthworms, nematodes, mites

and collembola but also bacterial and fungal communities can drive litter de-

composition significantly (Bardgett and Wardle, 2010; Hättenschwiler et al.,

2005). Further, the chemical composition of litter differs across sites and

decomposition can be affected by edaphic factors. For example, plants that

grow in nutrient-poor environments may produce nutrient-poor litter, slowing

decomposition (Carreiro et al., 1999). Early stage decomposition can be con-

trolled by climate and the concentrations of major nutrients (e.g. N, P, sulphur

(S), potassium (K), calcium (Ca), magnesium Mg), manganese (Mn)) (Berg

and McClaugherty, 2008), by nematodes and microbial communities (García-

Palacios et al., 2016), by the amount of soluble substances (Heim and Frey,

2004), and by soil temperature and pH (Djukic et al., 2012). Decomposition
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at later stages is driven mostly by climate (moisture, temperature), organic

matter quality, nitrogen availability, soil texture, and litter quality, especially

its lignin concentration (Prescott, 2005).

1.2.2 Litter diversity

Interactions between litters from various species or genotypes affect decom-

position by increasing the number and type of microhabitats and chemical

diversity (Hättenschwiler et al., 2005). Litters from different species or geno-

types vary in their nutrient content, chemical composition and leaf structure,

and thus differ in their capacity to provide resources to microbes (Hansen and

Coleman, 1998; Hector et al., 2000). Due to the complementary resource use

permitted by mixed litter compared with homogeneous litter, detritivores and

microbes are able to optimize their nutrient acquisition (Gessner et al., 2010).

This can have an overall impact on decomposition rate and microbial activ-

ity, as nutrients can be actively transferred from one litter type to the other

(Schimel and Hättenschwiler, 2007).

Fungi can grow into nutrient-poor litter and then compensate for limit-

ing resources by extending their hyphae into nutrient-rich litter. Thus, fast

decomposition of nutrient-rich litter with a low C:N ratio can increase de-

composition of nutrient-poor litter (Wardle et al., 1997). Nutrients can also

be passively transferred via leaching of soluble and carbon compounds. More

inhibitory compounds in one litter type can thereby be leached and transferred

to another litter type. However, this depends on the mobility of nutrients, as

some (e.g. phosphorus) are more mobile than others (e.g. nitrogen). Diverse

litter can improve microclimatic conditions and microhabitats, due to varia-

tions in leaf color, size and shape and leaf-surface structure of the mixed litter

involved (Wardle et al., 2003). In general, this indicates that increasing litter

diversity might increase decomposition due to complementary resource use.

However, litter diversity and decomposition can have additive (single-species

litter decomposes equally fast to mixed litter) or non-additive effects (Gart-

ner and Cardon, 2004). The decomposition rate of mixed litter can be either

higher or lower than that of single-species litter. Among the non-additive ef-

fects, synergistic effects dominate, followed by antagonistic effects (Gartner

and Cardon, 2004; Hättenschwiler et al., 2005).

1.3 Soil fungal community

Soil fungal communities are crucial for driving biogeochemical processes

in soils and act as decomposers and mutualists (Tedersoo et al., 2014). Soil

fungi can link aboveground and belowground ecosystem processes by decom-

posing organic matter, live in symbiosis with plant organisms to obtain photo-
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synthesized carbon from the plant, which triggers nutrient uptake by the fungi

(Ortas and Rafique, 2017), and drive carbon cycling as root-associated me-

diators of belowground carbon transport and respiration (Clemmensen et al.,

2013). Fungal communities are globally driven by edaphic and climate condi-

tions, while fungal richness generally increases with latitude (Tedersoo et al.,

2014). There are two major fungal groups that are of interest for the work in

this thesis. These are saprotrophic fungi and mycorrhizal fungi, which differ

in their functional role.

1.3.1 Saprotrophic fungi

Saprotrophic fungi are usually taxonomically basidiomycetes and obtain their

energy and nutrients from dead plant tissue and animals. They are able to

produce hydrolytic enzymes that can degrade complex cell wall polymers

of plants, such as lignin, cellulose, hemicellulose or pectin, to obtain car-

bon (Baldrian, 2008). Besides degrading wood and other dead plant tissue,

litter-degrading fungi can translocate resources such as carbohydrates, min-

eral nutrients (e.g. nitrogen) and water with their mycelia and can reallocate

nitrogen in litter from nutrient- and resource-rich to nutrient- and resource-

poor regions (Boddy, 1999; Lindahl and Olsson, 2004).

1.3.2 Mycorrhizal fungi

Mycorrhizal fungi are known for their symbiotic relationships with plant

roots and have key functional traits for nutrient acquisition by plants (Martin

et al., 2001). There are two main types of mycorrhizal fungi (ectomycorrhizal

and endomycorrhizal), which enter into different symbiotic relationships with

their hosts. To exchange nutrients, the hyphae of the ectomycorrhizal fungi

form a sheath around the outside of the plant root and grow between the plant

cells. In contrast, the hyphae of the endomycorrhizal fungi enter the plant

root cells. Ectomycorrhizal fungi are one of four main functional mycorrhizal

types (ectomycorrhiza, arbuscular mycorrhiza, ericoidmycorrhiza and orchid

mycorrhiza) belonging to the Basidiomycota or Ascomycota (Barker et al.,

1998; Smith and Read, 2008). They dominate boreal and temperate forests

where 95 % of short roots form a symbiotic association with ectomycorrhiza

(Martin et al., 2001). Ectomycorrhiza predominantly form a symbiosis with

tree species (Salicaceae, Dipterocarpaceae, Pinaceae, Fagaceae, Myrtaceae,

Betulaceae, Nothofagaceae and some Fabaceae) (Martin et al., 2001; Teder-

soo et al., 2010). In forests, major nutrients such as nitrogen and phosphorus

become progressively immobilized into accumulating organic layers and ac-

cess to these resources becomes limited. In such cases, ectomycorrhiza can

contribute to tree nutrition through mineral weathering (Landeweert et al.,

2001) and mobilization of nutrients from organic matter (Read and Perez-
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Moreno, 2003). On the top organic layers, where decomposition occurs and

mostly saprotrophic fungi dominate, complex carbohydrates originating from

litter (i.e. cellulose and lignin) are present. However, ectomycorrhiza have

only a limited ability to degrade litter using polyphenol oxidases and to re-

lease nitrogen from polymers (i.e. cellulose and lignin) (Lindahl and Tunlid,

2015; Read and Perez-Moreno, 2003). In soils, ectomycorrhiza have access

to root exudates containing e.g. carbon fixed in photosynthesis, which is

strongly increased by the presence of the fungi (Hobbie, 2006; Nehls et al.,

2010). As a symbiont, ectomycorrhiza provide host plants with nutrients and

water, especially when either is limited (Smith and Read, 2008). They form

an external mycelium that is important for spreading the ectomycorrhiza and

in forming a network to facilitate the transfer of carbon and nutrients be-

tween individual hosts (Selosse et al., 2006; Simard and Durall, 2004). Nu-

trients can be taken up by an increased uptake surface (as hyphae access more

volume than roots due to their increased surface) and associated access to a

greater soil volume, or by increased nutrient mobilization through ectomyc-

orrhiza using specialist enzymes to take up organic nitrogen and phosphorus,

which are unavailable to most plants, or to extract nutrients such as phospho-

rus, potassium, calcium and magnesium from solid mineral substrate through

organic excretion, thereby making them accessible to plants via the ectomy-

corrhizal mycelium (Wallander and Wickman, 1999).

In contrast to ectomycorrhiza, arbuscular mycorrhiza occur mainly in

nutrient-rich or phosphorus-limited habitats such as tropical forests, although

some are found in temperate forest, grassland and cropping systems (Smith

and Read, 2008; Wang and Qiu, 2006). Arbuscular mycorrhiza are able to

take up nutrients (especially phosphorus) from organic material, but are lim-

ited in their capacity to degrade organic material enzymatically (Hodge and

Storer, 2014). Like the ectomycorrhiza, their main source of energy is pho-

tosynthetically fixed carbon, which they invest into thin ‘feeder’ roots that

absorb water and nutrients to take up nutrients in mineral form.

1.3.3 Salix as a dual mycorrhizal plant

In some tree species, for example members of the families Salicaceae and

Myrtaceae and the genus Quercus, dual mycorrhizal systems are formed by

arbuscular mycorrhiza and ectomycorrhiza, with the latter mostly dominat-

ing. In general, dual mycorrhizal plants benefit from synergistic effects and

the two mycorrhizal types can complement each other in acquisition of lim-

ited nutrients (Tedersoo and Bahram, 2019). Plant colonization by mycor-

rhizal fungi can be influenced by soil water content, the availability of soil

nutrients, site management and the diversity of the vegetation. In this thesis,
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the dual mycorrhizal genera of different Salix (willow) genotypes were stud-

ied. Salix is usually dominated by ectomycorrhiza in terrestrial systems in

northern Europe (Hrynkiewicz et al., 2009), whereas arbuscular mycorrhiza

may dominate in flooded areas in response to the flooding (Lodge, 1989). The

dominance of either arbuscular mycorrhizal or ectomycorrhizal colonization

is not only environmental-dependent, but also genotype-dependent (Baum

et al., 2018).

1.3.4 Relationship between host genotype identity, genotype diversity and soil
fungi community

The diversity of mycorrhizal fungi contributes strongly to the maintenance of

plant diversity and ecosystem functioning (van der Heijden et al., 1998). The

functioning of diverse plant communities can be affected by the presence

and diversity of decomposers (i.e. saprotrophic fungi) and mutualists (i.e.
mycorrhizal fungi), which can influence the resource acquisition abilities of

plants and change the competition between them (Wagg et al., 2014). For

example, increasing mycorrhizal diversity can increase the uptake efficiency

of organic phosphorus (Baxter and Dighton, 2005).

However, plant responses to fungal community are often genotype depen-

dent (Schweitzer et al., 2008). In particular, mycorrhizal fungal diversity and

composition are influenced by size and growth of the host plants (Korkama

et al., 2006; Velmala et al., 2012), differences in chemistry of senescent leaves

(Lamit et al., 2016), soil properties (Bonito et al., 2019; Tedersoo et al., 2016),

nutrient availability (Gallart et al., 2017) and changes in competition between

host plant genotypes (Baum et al., 2018).

1.4 Willow short-rotation coppice

Many of the studies performed when developing the biodiversity-ecosystem

function theory were carried out in grassland systems (Hautier et al.,

2014; Hector, 1999; Isbell et al., 2015; Tilman, 2001) and forest systems

(Chisholm et al., 2013; Piotto, 2008; Zhang et al., 2012). In those systems,

the diversity-productivity relationship was often explored using interspecific

diversity, where taxonomic predictors were used rather than functional traits

(Weih et al., 2019). The willow plant material used in short rotation coppice

(SRC) is taxonomically diverse and often comprised of hybrid varieties

originating from different taxonomic units or species, accommodating great

variability in functional traits (Kuzovkina et al., 2008; Weih et al., 2019).

As described in section 1.1.2, plants with different functional traits can

use different niches, which can improve productivity. Therefore, instead of

focusing on purely taxonomic differences between species, as done in many
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other studies, a selection of different willow genotypes, offering a large

variety of different functional traits, was used in this thesis to investigate

biodiversity-ecosystem function theory.

Native willows (species of the genus Salix) have been traditionally

used for multiple purposes, e.g. baskets, cooking, boats or even heating,

for more than 10,000 years (Isebrands and Richardson, 2014). In order to

meet the increasing demand for baskets, cultivation of willows on a small

scale started already around 1880. Since the oil crisis in the 1970s, the

interest in renewable biomass resources to replace fossil fuels has increased,

and with that the demand for renewable energy. In order to satisfy this

increasing demand, different sources of renewable biomass are emerging.

Among these are second-generation biofuels, which are processed from

lignocellulosic biomass derived from various plants including Miscanthus
or switchgrass, and fast-growing woody crops such as willows (Salix spp.)

and poplar (Populus spp.). Both willows and poplar are cultivated in short

rotation coppice (SRC) plantations (Keoleian and Volk, 2005). Willows are

planted in high density in SRC and harvested for biomass in cycles of two

to five years, with new shoots sprouting after each so-called cutting cycle

(Larsson et al., 2007). Besides their fast growth and the potential for high

yields, Salix species are able to grow on marginal agricultural land or on soil

contaminated with heavy metals, where this production system can be used

for phytoremediation (Aronsson and Perttu, 1994). With the introduction

of Salix cultivation in SRC to produce renewable energy, various species

have been combined in plant breeding to obtain material with different

agronomic (i.e. growth, phenology and drought, cold and pest resistance)

and physiological traits (i.e. phenology, water-use efficiency, cold hardiness,

site-adaptability) (Stanton et al., 2014). The main focus in current breeding

efforts is on leaf rust resistance and high yield (Clifton-Brown et al., 2018).

Salix SRC is usually planted in monoculture. However, high-yielding

monocultures are reported to be more vulnerable than genotype mixtures to

pathogens (i.e. leaf rust) (Karp et al., 2011) and to herbivory by insects or

mammals (Larsson, 1998). Susceptibility to pathogens is one of the strong

arguments for growing Salix in mixture, rather than monoculture, as a mixture

of genotypes with different functional traits pertaining to e.g. high resistance

to different pathogens, might reduce the overall disease level within the SRC

community. When willow mixtures are used for pest control of pathogens

such as leaf rust, the genetic diversity of the planting material matters, since

a mixture of only different Salix viminalis genotypes comes to resemble a

monoculture after two cutting cycles (Begley et al., 2009). Compared with

diverse use of land for food production, mixed SRC plantations are less prob-
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lematic to harvest, unless the growth architecture (e.g. many small branches,

many shoots per stool with many branches) varies dramatically between the

genotypes grown.

Based on differences in functional traits such as drought, disease resis-

tance and high yield in specific environments, various Salix varieties have

been selected for bioenergy production (Kole et al., 2012). Among the va-

rieties bred for biomass production are ‘Björn’, ‘Jorr’, ‘Loden’ and ‘Tora’.

These four varieties partly belong to different Salix- species and differ in

their functional traits.

Figure 1: Schematic diagram of leaf area, height and shoot diameter, of the

four genotypes studied in this thesis: ‘Björn’, ‘Jorr’, ‘Loden’ and ‘Tora’ (di-

agram from Paper II). Values shown besides the ‘stem’ are normalized shoot

diameter and values in the green ‘canopy’ are normalized leaf area.

1.4.1 Functional trait differences between the genotypes studied in this thesis

In general, phenotypic traits can be measured at the level of individual plants

and are defined by morphological, physiological and phenological charac-

teristics, without additional information from the environment (Violle et al.,

2007). There is a high variation in different morphological and functional

traits in Salix. For example, some species or genotypes have high leaf area,
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but are shorter than other species, while some genotypes have an upright

growth habit with long shoots and small leaves.

Although the varieties ‘Björn’ and ‘Tora’ are taxonomically closely re-

lated to each other, as they derive from the same parent material (S. viminalis
x S. schwerinii), they differ in their morphological characteristics (e.g. stem

diameter and leaf area) and functional characteristics (e.g. leaf nitrogen con-

centration). ‘Tora’ is often reported to be one of the highest-producing geno-

types, and ‘Björn’ is sometimes reported to be one of the lowest-producing

genotypes (Weih and Nordh, 2002) (Figure 1). The pure S. viminalis geno-

type ‘Jorr’ has the highest biomass productivity per unit leaf area (leaf area

productivity). The broad-leaved genotype ‘Loden’ (S. dasyclados) is charac-

terized by the highest leaf area ratio among the four genotypes studied here,

and is the most taxonomically distant from the other three genotypes (Lars-

son, 1998). These four varieties (or genotypes) were used in this thesis to

examine the effects of genotype diversity on biomass productivity, litter de-

composition and fungal community development.
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2 Aim and hypotheses

The overall aim of this thesis was to investigate how increasing Salix geno-

type diversity affects ecosystem functions related to tree biomass production

(Papers I and II), leaf litter decomposition (Paper III) and soil fungal diversity

(Paper IV).

The following hypotheses (H1-H3) were tested:

H 1 Biomass production, litter decomposition and fungal diversity are higher

in Salix mixtures than monocultures, and increase with the genetic rich-

ness of the willow community.

H 2 Addition of different Salix genotypes to a genotype mixture has different

effects on willow community productivity, leaf litter decomposition and

soil fungal diversity.

H 3 Addition of taxonomically distinct willow genotypes to a mixture has a

stronger effect on productivity, litter decomposition and fungal diversity

than addition of taxonomically closely related genotypes.
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Figure 2: Schematic representation of the overarching hypothesis in this the-

sis, which was that increasing genetic diversity increases overall community

biomass production, litter decomposition and fungal community diversity.

Four Salix genotypes were grown in monoculture, and in mixture of two,

three and four genotypes. Growth, decomposition (using litter bags) and soil

fungal community in all diversity treatments were analyzed after one cutting

cycle (three years of growth).
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3 Material and Methods

The biomass productivity, diversity effects, decomposition and fungal com-

munity of the four different Salix genotypes (‘Björn’, ‘Jorr’, ‘Loden’ and

‘Tora’) was studied at three field sites located in Sweden and Germany (Pa-

pers II-IV). In addition, the biomass productivity and nitrogen economy of

two of the four genotypes (‘Loden’ and ‘Tora’) was investigated in detail on

a whole-plant basis (including all plant parts) in a pot study that included two

nitrogen treatments, one with low and one with high soil nitrogen availability

(Paper I).

3.1 Experimental design and plant material

3.1.1 Field trials

In order to compare the growth of the Salix genotypes between different

latitudes, field trials were established at three different sites: Uppsala, cen-

tral Sweden (59◦49’ N; 17◦39’ E), Rostock, northern Germany, (54◦02’ N;

12◦05’ E) and Freiburg, southern Germany (48◦01’ N; 7◦49’ E) in spring

2014 (Papers II- IV)(Figure 3).

Each site consisted of a field with three blocks each (one block = one

replicate). At the Uppsala and Freiburg sites, four Salix genotypes with differ-

ent phenology and functional traits were grown: ‘Jorr’ (S. viminalis), ‘Björn’

(Salix schwerinii E. Wolf. x S. viminalis L.), ‘Tora’ (S. schwerinii x S. vim-
inalis) and ‘Loden’ (S. dasyclados Wimm.). All genotypes were planted in

monoculture and in all possible mixture combinations (two-, three- and four-

genotype mixtures), with all 15 combinations (15 plots) replicated three times

(in three blocks; total number of plots n=45). Due to space restrictions, at the

Rostock site only the two genotypes with the greatest differences in func-

tional traits (‘Loden’ and ‘Tora’) were planted in monoculture and mixture.

Each plot consisted of nine subplots and 144 plants (12 rows x 12 plants),

planted in a hexagonal pattern (right-hand image in Figure 4). Mixtures with

two genotypes were planted in a checkerboard pattern within plots, while

mixtures with three and four genotypes were randomly planted.
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Figure 3: Location and block pattern of the three study sites: Uppsala in cen-

tral Sweden, Rostock in northern Germany and Freiburg in southern Germany

(Papers II and III; Paper IV only Uppsala and Rostock).

3.1.2 Pot study

The pot study was conducted in Uppsala in 2014 (Paper I). As in the field

trial in Rostock, only the two genotypes ‘Loden’ and ‘Tora’ were planted in

monoculture and mixture in the pot study. Salix cuttings were cut into 5-cm

pieces to minimize the initial nitrogen amount in the cuttings, and randomly

selected per genotype for potting. Cuttings were planted in 16.9 L rectangu-

lar pots filled with 22 kg washed quartz sand. Each pot contained six plants,

planted in a hexagonal pattern to ensure equal distance to neighboring plants

(Figure 5). The experiment had a full-factorial block design, where plants

were treated with either a high amount of nutrients (F+) or a low amount

of nutrients (F-), and with full water supply (well-watered, W+) or limited

water supply (water-stressed, W-). In total, the study included 12 treatments
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Figure 4: (Left) Field design of the trials in Uppsala and Freiburg in a random

block design with four Salix genotypes (A = ‘Björn’, B = ‘Jorr’, C = ‘Loden’,

D = ‘Tora’) growing in various mixtures (monoculture; 2-, 3- and 4 genotype

mixtures). (Right) Example of the plot design of the three-genotype mixtures,

showing the random plantation scheme.

(W+N+ ‘Loden’, W+N+ ‘Tora’, W+N+ ‘Loden’ + ‘Tora’, W+N- ‘Loden’,

etc.)(Figure 5) each with four replicates (i.e. in total 48 pots), plus two addi-

tional pots (one of each genotype) without any experimental treatment for an

initial harvest.

3.2 Biomass assessments

3.2.1 Field trials

In winter 2016/2017, after three growing seasons, all field trials were har-

vested. Within an area of 8.0 m x 3.2 m = 26.24 m2 in each plot, all plants

were cut 10 cm above the ground and shoot fresh weights was measured.

To calculate genotype-specific relationships between shoot fresh weight

and shoot dry weight (shoot biomass), stratified sampling of 10 shoots per
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Figure 5: Design of the pot experiment with the Salix genotypes ‘Loden’

(broad-leaved) and ‘Tora’ (narrow-leaved), planted in monoculture and mix-

ture, and grown under high fertilization (green dots) or low fertilization (red

dots) and well-watered (blue dots) or water-stressed (yellow dot) conditions.

monoculture plot was performed (four genotypes x three replicate monocul-

ture plots = 10 shoots x 4 genotypes x 3 blocks =120 shoots). The stratified

sampling covered the range of diameters recorded for a specific genotype,

from shoots with the smallest to shoots with the greatest diameter. Each of

the 120 selected shoots was cut 10 cm above the ground and fresh weight

was determined. Shoot biomass was calculated after shoots were dried in an

oven at 70◦C for 96 hours. Allometric relationships between monoculture

and mixture did not differ, and thus stratified sampling was performed only

in monoculture plots.

3.2.2 Pot study

In order to analyze the productivity and allocation of plant material, first and

final harvests were conducted in each year. The first harvest was carried out

in late June, 34 days after start of growth, when plants had just sprouted

and had 1-2 leaves. For this harvest, only one pot with six plants per Salix
genotype was harvested. Just before plants entered the senescence stage, after

120 days of growth in early September, a final harvest was performed of the

full treatment design. At both harvests, plants were separated into leaves,

shoots, cuttings and roots. Number of leaves was counted and Alea f was

measured, as were shoot height, shoot diameter and leaf biomass. In order to
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calculate aboveground biomass, all leaves and shoots were dried in an oven

and weighed. In addition, specific leaf area was calculated by dividing Alea f
by total leaf biomass. Root biomass was measured for two replicate pots per

treatment. Nitrogen content was determined for all plant parts, pooled per

genotype and pot, and total nitrogen content was calculated by multiplying

total nitrogen concentration per unit biomass of each plant organ by total

biomass of that plant organ and adding together the values obtained.

3.3 Analysis of diversity effects

Net diversity was calculated by using additive partitioning (Loreau and Hec-

tor, 2001) to analyze the relationships between aboveground biomass (Paper

I) or shoot biomass (Paper II) of the plants grown in monoculture and mixture.

Specifically, net diversity effect was assessed using the differences between

the observed and expected biomasses in the mixture, where the expected val-

ues were based on the individual performances of genotypes when grown in

the respective monocultures. The net diversity effect was calculated from the

sum of the complementarity and selection effects. If the selection effect of a

genotype is positive, the genotype that performs best in monoculture can be

assumed to dominate in mixtures. A negative selection effect of a genotype

implies that a less well-performing genotype (e.g. in terms of biomass) has

an advantage in mixtures and thus dominates (Tilman et al., 1997). A positive

complementarity effect indicates that a genotype performs better in mixture

than in monoculture.

3.4 Analysis of decomposition

In order to analyze leaf decomposition rates for each genotype mixture stud-

ied in the field trials, a selected number of plants per plot were covered with

tree netting in autumn 2014 to collect leaf litter (Figure 6a). After all leaves

had dropped from the trees, the litter was slowly dried at 40 ◦C, mixed, and

subsamples were placed in litter bags. The litter bags were triangular and

had a mesh size of 50 μm to allow fungal and bacterial entry, colonization

of the contents and decomposition, while excluding plant roots from growing

into the bags. The litter bags were filled with plot-specific litter and placed

around the central subplot in each plot (Figure 4). Litter bags were recovered

after 73-80 weeks and 119-126 weeks and dried in oven at 70 ◦C for 72 hours

(Figure 6b). It was found that very small clay particles had entered the litter

bags incubated in Uppsala, and therefore litter mass loss could not be calcu-

lated by simply weighing the litter bags. To correct the dry weight loss for

clay particles attached to the litter, the decomposed litter was weighed, incin-
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erated in a furnace oven at 550 ◦C for 6 hours to combust all organic matter,

and weighed again. The concentrations of carbon, nitrogen, phosphorus and

lignin in the initial litter, and the concentrations of carbon and nitrogen in the

decomposed litter, were analyzed per pooled litter sample and per plot.

Figure 6: (a) Collection of litter in tree-nets for the decomposition study

carried out in field trials, (b) litter bags were filled with dry litter and placed

on the ground, (c) recovered litter bag with decomposed litter, (d) ceramic

crucibles containing decomposed litter from the litter bags and (e) the same

samples after ashing at 550 ◦C.
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3.5 Fungal community analysis

Soil fungal communities were analyzed in soil samples from the field sites

in Rostock and Uppsala, using high-throughput sequencing. With the aim of

analyzing initial fungal communities in soil, nine soil samples (one per sub-

plot) were collected in spring 2014 before the cuttings were planted, pooled

per plot and then frozen at -18 ◦C or dried rapidly at 50 ◦C. This procedure

was repeated each spring from 2015-2017, to follow annual changes in devel-

opment of the fungal communities (Figure 7). Seasonal changes in the fungal

communities were studied only during the 2016 growing season, using soil

samples collected in spring, summer and autumn.

Figure 7: Work flow of the field studies: Salix cuttings were planted in

spring 2014, grown over three growing seasons and harvested in spring 2017.

Throughout this period, shoot diameter and biomass and leaf biomass were

measured to determine productivity (black text). Litter was collected and

litter bags were placed on the soil surface and later recovered to analyze de-

composition pattern (green text). Soil samples were taken to analyze fungal

communities in the soil (violet text).

For high-throughput sequencing, plot-pooled samples were freeze-dried

and milled to homogenize each sample and break down cell wall material,

followed by DNA extraction. In polymerase chain reaction (PCR) analy-

sis, a set of primers (gITS7, ITS4 and ITS4arch) was used to identify fun-

gal species (Ihrmark et al., 2012). Fungal species can be identified through
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their internal transcribed spacer (ITS) region. In order to identify individ-

ual samples, unique identification tags were added to the amplicons. With

this method, each fungal community per sample was identified in a pooled

high-throughput sequencing approach, followed by bioinformatics analysis.

3.6 Data analysis

In the field trials, shoot biomass data were derived using genotype-specific

shoot fresh weight and dry weight (shoot biomass) from stratified sampling

(Paper II). The shoot biomass per individual genotype was calculated from

the resulting genotype-specific linear regression (shoot biomass= a +b x shoot

fresh weight).

3.6.1 Plant nitrogen economy

Plant nitrogen economy in the pot experiment (Paper I) was calculated based

on the methodology introduced by Weih et al. (2011) and Weih (2014). Mean

plant nitrogen content was calculated based on the nitrogen content in the

perennial part of the plant (the cutting) and the nitrogen content in biomass

from the first and second harvest.

3.6.2 Decomposition

In the leaf litter decomposition study (Paper III), the fraction of remaining

leaf mass was calculated per plot as the ratio between the mean leaf mass re-

maining when litter bags were harvested and the mean mass of leaves inserted

in the litter bags before field incubation.

3.6.3 Statistical analysis

Linear mixed models were used to calculate the effects of fertilization treat-

ment, genotype and genetic richness (Papers I and II). The Shapiro-Wilk test

was used to test for normal distribution and scatter plots were used to test

for homoscedasticity, followed by analysis of variance (ANOVA) to test for

differences between treatments (Paper I at pot level, Papers III and IV at plot

level). Two- and three-way analysis of variance (ANOVA) was followed by

multiple-comparison Tukey’s honestly significant difference (HSD) test to

compare treatments. The confidence interval was set at 95 % i.e. statisti-

cal significance was set at p<0.05. Analysis of covariance (ANCOVA), with

plant biomass as covariate, was applied to test for differences in root allo-

cation. All statistical and graphical analyses were performed in R (version

3.3.3, R Core Team 2019).

Sequence data for the soil fungal community were clustered, resulting

in operational taxonomic units (OTUs), also called species hypotheses

36



(SHs), and given unique names (Kõljalg et al., 2013). Multivariate analyses

(principal component analysis (PCA) and detrended correspondence analysis

(DCA)) were performed to visualize the variation in soil fungal communities

using SHs. Analyses were conducted for the two sites, Rostock and Uppsala,

together and separately. The multivariate analyses were performed in

CANOCO (version 5.02, Microcomputer Power).

3.6.4 Genotype-specific community performance, analyzed by Bayesian
model

A linear Bayesian model was used to calculate the probability (and range

of credible values) of an effect caused by the addition of a specific Salix
genotype to a community with other Salix genotypes. Positive, neutral or

negative effects on shoot biomass (Paper II), decomposition or remaining ni-

trogen (Paper III) or fungal diversity (Paper IV) were analyzed using this ap-

proach. Thereby, differences for all possible community combinations, with

and without a specific genotype, were estimated and compared. The result-

ing posterior distributions were derived and mapped. A posterior distribution

around 0.5 was considered to have no effect, whereas a posterior distribution

close to 0 was interpreted as indicating a strong negative effect and a posterior

distribution close to 1 as indicating a strong positive effect.

A second linear Bayesian model was used to estimate the probability of a

specific Salix genotype to perform better grown in mixture with other geno-

types than grown in monoculture (two, three- or four-genotype mixture minus

monoculture). Here, posterior distribution close to 1 was taken to indicate that

a genotype was likely to perform better in mixture than in the corresponding

monoculture, while values close to 0 were taken to indicate the contrary. The

models were run in JAGS (Plummer, 2003).
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4 Results and Discussion

4.1 Genetic diversity

Based mainly on previous findings in multi-species grasslands and forest

stands, willow productivity and other ecosystem processes were expected to

increase with increasing diversity of plant community components. It was

therefore expected that increasing genetic diversity would result in an in-

crease in shoot biomass production, higher litter decomposition rate (less

remaining mass and nitrogen) and higher fungal species richness with in-

creasing diversity level in the willow plantations investigated (see Figure 2).

However, the results showed that biomass production (Paper II), litter decom-

position including the fraction of remaining nitrogen (Paper III) and fungal

species richness, diversity and biomass (Paper IV) did not differ significantly

between monoculture and mixtures at plot level at any of the three field sites

included in this thesis work (Figure 8).

Rather than the expected increase in productivity and leaf litter decompo-

sition with increasing diversity, shoot biomass production and litter decompo-

sition rate actually decreased in the four-genotype mixture compared with the

monoculture and two- and three-genotype mixtures at the Freiburg site. This

observed negative effect of mixtures on productivity contradicts previous re-

ports of higher productivity with higher species richness and higher diversity

of traits (Cardinale et al., 2011; Duffy et al., 2017). At the Freiburg site,

the three-genotype mixtures grew better than the monocultures and two- and

four-genotype mixtures. A significant negative complementarity effect sug-

gests that competition could explain the significant decrease in productivity

observed of the four-genotype mixture (see Figure 4 in Paper II). At the Up-

psala site, mean productivity of the three-genotype mixtures was not differ-

ent from mean productivity of the monocultures. Two three-genotype com-

binations produced more shoot biomass than the other two three-genotype

combinations (see Figure S1 in Paper II). When various three-genotype mix-

ture combinations that differed greatly in their mean productivity were taken

for analysis to calculate mean productivity, this could explain why the re-

ported mean productivity of the three-genotype mixtures was similar to the
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Figure 8: (From the top) Shoot biomass (Mg/ha), fraction of remaining mass

(M/M(0)), fraction of remaining nitrogen (N/N(0)), fungal richness and fun-

gal diversity (H. index) across four diversity levels (number of Salix geno-

types in mixture) and three field trials (Freiburg, Rostock and Uppsala).
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mean productivity of monocultures. The four genotypes planted in the field

sites differed in their functional traits, what leads to the hypothesis that these

genotypes use different niches when grown in mixtures, resulting in a posi-

tive complementarity effect. However, no evidence was found of an overall

positive complementarity effect when assessed across all field sites. In the

pot study (Paper I), a positive complementarity effect of the two-genotype

mixture (‘Loden’ and ‘Tora’) was observed only when the plants were grown

under low nutrient supply. A positive complementarity effect was also found

in the field study performed in Uppsala, but only for the two- and three-

genotype mixtures, suggesting that niche differentiation could have occurred

at this site. A more pronounced complementarity effect, and thus higher

niche differentiation between the genotypes, might appear in the future when

the trees have grown larger and interaction between neighboring plants can

be expected to be greater. Population structural changes may then lead to

dominance of the best-performing species in the community (Loreau, 2000;

Tilman et al., 1997).

A more diverse genotype mixture can be expected to provide higher

variability in litter quality, with different nutrient and lignin concentrations.

Hence, the litter has a higher chance of being degraded by the microbial

community (Schimel and Hättenschwiler, 2007). The results of the litter

decomposition study (Paper III) contradicted previous studies showing faster

decomposition with increasing tree species richness (Gartner and Cardon,

2004; Hättenschwiler et al., 2005; Jacob et al., 2009). Although leaf litter

quality traits such as phosphorus and lignin content differed significantly

between the four genotypes grown in monoculture, what implies that they

provide different resource quantities to the microbial communities, decom-

position in the four-genotype mixture decreased. The litter decomposition

rate of single-genotype litter differed significantly between the genotypes

grown in monoculture in Uppsala, but these differences were not seen when

the plants were grown in mixtures (see Figure 2 in Paper III). Detailed

comparison of genotype combinations revealed that the decomposition rates

in some mixtures were faster than in others. Litter of the fast decomposing

genotypes ‘Jorr’ and ‘Loden’ incubated together showed a higher decompo-

sition rate than litter of the combination of slowly decomposing genotypes

‘Björn’ and ‘Tora’ (Figure 9).

Apart from increases in productivity and decomposition, greater hetero-

geneity in resources and environmental conditions supported by plant-species

richness should result in higher soil microbial richness (Hooper et al., 2005;

Wardle, 2006), here reported as fungal richness and diversity. Although this

expectation seems reasonable and soil fungal richness may be affected by
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Figure 9: Fraction of remaining mass of all genotypes grown in monoculture

and in 2-, 3- and 4-genotype mixtures in Freiburg and Uppsala. Mean stand

biomass of the Salix genotypes ‘Björn’ (A), ‘Jorr’ (B), ‘Loden’ (C) and ‘Tora’

(D) after three years of growth.

plant diversity (Urbanová et al., 2015), the scientific evidence is contradic-

tory. Plant species richness can drive fungal diversity at local scale (Peay

et al., 2013). Yet, abiotic factors can be stronger drivers of fungal commu-

nity richness than plant species richness (Tedersoo et al., 2014). In this thesis,

the distribution of fungal functional groups was similar between monoculture

and two- and three-genotype mixtures. The distribution of fungal functional

groups even increased slightly with genetic richness of Salix plants after three

years of Salix growth, with a strong increase in ectomycorrhizal fungi in the

third year (see Figure S2 in Paper IV). However, in the four-genotype mix-

ture, almost no increase in ectomycorrhiza during the three years of growth

was found and the overall fungal diversity showed a negative trend (Figure 8).

This is consistent with studies performed in Estonia and Finland, where tree

species diversity did not show strong effects on fungal diversity (Tedersoo

et al., 2016).

Overall, the simple step of adding one or two genotypes to monocultures,

irrespective of the genotypes used, did not alter productivity, decomposition

or fungal diversity in the studies described in this thesis. In fact, growing all

four selected Salix genotypes together had a negative impact on the ecosystem

functions investigated. In the following two sections, the genotype-specific

effects are explored in detail, in order to evaluate the contribution of the indi-

vidual genotypes to overall mixture performance.
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4.2 Genotype-specific response to biomass production, decom-

position and fungal diversity

Within a plant community of multiple species or genotypes, plant identity is

important (Scherer-Lorenzen et al., 2004). From an ecological and agronomic

perspective, it is interesting to define genotypes that improve ecosystem func-

tions and to identify those that have a generally negative effect. This thesis

analyzed whether addition of a specific Salix genotype had a positive, neg-

ative or no effect on biomass productivity, litter decomposition and fungal

diversity.

Genotype differences in biomass production followed the same pattern at

the Freiburg and Uppsala sites with respect to addition of a particular geno-

type to the community of other genotypes. However, for litter decomposition

and the fraction of remaining nitrogen, differences emerged between geno-

types and sites (Figure 10). In general, the two full-sib relatives ‘Björn’ (Salix
schwerinii x S. viminalis) and ‘Tora’ (S. schwerinii x S. viminalis) had a rather

negative impact on biomass production. Considering the similar plant mor-

phology of the two genotypes, their similar effect is perhaps not surprising.

Especially their greater average height compared with the other genotypes,

may enable them to outgrow the other genotypes when grown in mixture.

‘Björn’ and ‘Tora’ also exhibited similar decomposition rates between sites,

but had different effects on the overall decomposition rate of litter in the com-

munity. Although these genotypes are closely related (Barker et al., 1999),

they show different functional traits, especially in leaf nitrogen concentration

(Weih and Nordh, 2002). Here, they had different effects on productivity

(Figure 6 in Paper II) and litter chemical characteristics and decomposition

rate (Table 2 and Figure 2 in Paper III), which in turn can affect the perfor-

mance of the community.

In general, when present, ‘Tora’ had a negative effect on the productivity

of the plant community, decomposition and fungal diversity (Figure 10). The

negative effect of ‘Tora’ on productivity could be driven by its higher growth

compared with the genotypes ‘Jorr’ and ‘Loden’ (see Figure 1). ‘Tora’ bene-

fited from the presence of other genotypes, as it grew better in mixture com-

pared to monoculture, but this could not compensate for its overall negative

effect on the average productivity of the communities (Figure 6 in Paper II).

The negative effect of ‘Tora’ on the decomposition rate (shown as higher

fraction of remaining mass in Figure 10) when grown in a mixture could be

explained by the low litter quality of this genotype. At local scale, litter qual-

ity can drive litter decomposition, as nutrient-rich litter with a high nitrogen

and phosphorus content decomposes faster than low-quality litter with higher
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Figure 10: Posterior probability distribution showing the effect of the pres-

ence of a specific Salix genotype (Björn’, ‘Jorr’, ‘Loden’ and ‘Tora’) on mean

shoot biomass (left panels), fraction of remaining mass (M/M(0); middle pan-

els, black lines), fraction of remaining nitrogen (N/N(0); middle panels, red

lines) and fungal diversity (H. index; right panels). Positive values indicate an

increase, negative values indicate a decrease, and the vertical line indicates no

average effect of adding a specific genotype to the community. Dotted lines

indicate data from the Freiburg site and solid lines data from the Uppsala site.

Diagrams modified from Papers II and III, and data used from Paper IV.
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contents of complex compounds, for example lignin (Berg and McClaugh-

erty, 2008). In this study, ‘Tora’ produced the slowest decomposing leaf litter

among the genotypes, with a high lignin concentration and the lowest phos-

phorus concentration of all genotypes when grown in monoculture (Table

2 and Figure 2 in Paper III). These properties could potentially slow down

litter decomposition of the other genotypes. In contrast, similar decomposi-

tion rates and fractions of remaining nitrogen were found for ‘Tora’, ‘Björn’,

‘Jorr’ and ‘Loden’ monocultures grown at the site in Freiburg (Table 2 and

Figure 2 in Paper III). According to the Bayesian analysis, there is a very high

probability (0.97 in Freiburg and 0.99 in Uppsala) of ‘Tora’ lowering the lit-

ter decomposition rate when it is present in willow communities. Other litter

characteristics not assessed in this study could explain this finding, for ex-

ample greater leaf toughness, which would make it more difficult for the mi-

crobial community to degrade the leaf litter generated by ‘Tora’. Some stud-

ies report a negative relationship between litter decomposition rate and leaf

toughness, which in turn can affect nutrient release (Cornelissen and Thomp-

son, 1997; Gallardo and Merino, 1993; Pérez-Harguindeguy et al., 2000).

The negative effect of ‘Tora’ on litter decomposition rate and fraction of

remaining nitrogen in communities where ‘Tora’ was present could possibly

also be linked to the observed lower fungal diversity of communities con-

taining ‘Tora’. ‘Tora’ could affect other genotypes, and thus fungal diversity,

due to its leaf chemistry or belowground components such as root exudates,

which can play a role in structuring microbial communities (Schweitzer et al.,

2008). Fungal diversity can be driven more strongly by species or genotype

identity than by species diversity (Schweitzer et al., 2008). In this study, leaf

biomass, litter chemistry, fraction of remaining nitrogen in litter after decom-

position, and soil properties such as soil pH, soil nitrogen and soil carbon

were significantly correlated with fungal communities. This demonstrates

that variations in fungal community might be affected by different drivers.

For example, genotypic variation in aboveground plant traits can be linked to

soil microbial dynamics (Schweitzer et al., 2004), and ectomycorrhizal fungal

communities can be linked to plant biomass (Korkama et al., 2006; Velmala

et al., 2012), or leaf chemistry of senescent litter (Lamit et al., 2016). Soil

chemical characteristics such as soil pH or soil nutrients have also been found

to be strong drivers of fungal communities (Bonito et al., 2019).

The taxonomically distinct genotypes ‘Jorr’ (S. viminalis) and ‘Loden’ (S.
dasyclados) had a positive effect on productivity when added to a community

(Figure 10). The positive effect of ‘Jorr’ might be caused by its morphologi-

cal and phenological traits such as low leaf area and height (Weih and Nordh,

2005), providing other genotypes with more light and space for better growth
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compared to other genotypes. ‘Loden’ usually has greater leaf area and lower

shoot height (Weih and Nordh, 2005), leading to greater canopy stratifica-

tion. Greater canopy stratification, such as a second canopy layer in mixtures

and complementary crown shapes, could enhance canopy filling, in turn in-

creasing productivity when different genotypes are grown together (Ishii and

Asano, 2009; Pretzsch, 2014). At the Uppsala site, the genotypes ‘Jorr’ and

‘Loden’ increased decomposition rate when grown together with other geno-

types, which is not surprising as the litter of ‘Jorr’ and ‘Loden’ incubated in

monoculture decomposed faster (Figure 9; Figure 2 in Paper III). These two

genotypes also produced higher quality litter, with high phosphorus and low

lignin concentrations which led to faster decomposition rates (Table 2 in Pa-

per III). Thus, litter of ‘Jorr’ or ‘Loden’ could enhance the decomposition of

litter originating from other genotypes in the plant community.

In general, this evaluation of adding specific Salix genotypes to a commu-

nity showed that a close taxonomical relationship between community com-

ponents (for example ‘Björn’ and ‘Tora’) did not necessarily mean that they

exerted similar effects on ecosystem processes when present in a mixed com-

munity. It is worth pointing out the positive impact of ‘Jorr’ and ‘Loden’

on productivity and decomposition rate when present in a mixed community.

One of the most interesting findings in this thesis was the dominant (mostly

negative) effect of ‘Tora’ on productivity, decomposition rate and fungal di-

versity when present in a mixed community. This prompted further studies

on how this genotype (and the other genotypes) performed when grown in

mixture compared to their monoculture.
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4.3 Genotype-specific performance when grown in mixture com-

pared with monoculture

The four Salix genotypes studied in this thesis were planted in mixture

and monoculture to investigate the competitive or complementary use of

resources. Successful competitors grown in fertile ecosystems use their

resources efficient to produce aboveground and belowground biomass (Aerts,

1999; Caldwell et al., 1996; Lambers and Poorter, 1992). In nutrient-limited

ecosystems, plants tend to invest more biomass in roots (Bloom et al., 1985).

The genotypes used in this study differ their functional traits such as relative

growth rate, leaf area productivity and nitrogen uptake efficiency, suggesting

niche differentiation when the genotypes were planted in mixture. In the

pot study, the growth performance and nitrogen economy of the two Salix
genotypes ‘Loden’ and ‘Tora’ were examined under high-nutrient and low-

nutrient conditions, to identify potential drivers of niche differentiation when

both genotypes were grown in mixture compared with their corresponding

monoculture (Paper I). Both genotypes responded with a significantly higher

root growth rate to limited nutrient availability, which confirms previous

findings for many other plant species (Aerts et al., 1991; Ericsson, 1995).

At high nutrient availability, ‘Loden’ developed more roots when grown in

mixture than in monoculture, whereas ‘Tora’ showed similar performance in

both forms of culture (Figure 1 in Paper I).

‘Tora’ is a genotype with high shoot and root growth rate and high

leaf nitrogen concentration compared with ‘Loden’ (Weih and Nordh,

2002). Therefore, ‘Tora’ was expected to outperform the slower-growing

genotype ‘Loden’. In fact, the results showed that ‘Tora’ performed better

in terms of aboveground, productivity and nitrogen economy (nitrogen

uptake efficiency and yield-specific nitrogen efficiency) in monoculture

compared with mixture in both the high-nutrient and low-nutrient treatments.

‘Loden’ showed the opposite pattern, performing better in mixture than in

monoculture at low nutrient availability (Figure 4 in Paper I). These results

indicate that ‘Loden’ is the better competitor of the two. In terms of leaf

nitrogen productivity and leaf area productivity at low nutrient availability

(Figure 2 in Paper I), ‘Tora’ performed better in mixture, whereas ‘Loden’

performed better in monoculture. A previous study on three Salix genotypes

suggested that differences between monoculture and mixture become more

pronounced after two-four years of growth (Dillen et al., 2016). Thus, it

remains to be seen whether ‘Tora’ performs better than ‘Loden’ after more

growing seasons.

In this context, the growth performance of ‘Loden’ and ‘Tora’ in mono-

culture and in mixtures was evaluated at the three field sites (Freiburg, Ros-
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tock and Uppsala) (Figure 7 in Paper II). Differences in productivity (shoot

biomass) between the two genotypes in mixture resulted in a distinct pattern

across sites. As the pot study showed differences in nitrogen economy be-

tween the two genotypes grown in mixture and monoculture, it was expected

that these differences would result in a different growth performance pattern

across sites. It was found that ‘Tora’ performed better in monoculture than

in mixture with ‘Loden’ in Rostock, which was the site with the lowest soil

nitrogen content and soil organic matter content, what confirms the findings

of the pot study under low nutrient availability (Paper I). In Freiburg, the site

with the highest soil nitrogen content and soil organic matter content, both

genotypes showed higher productivity in mixture than in their corresponding

monoculture. In Uppsala, only ‘Tora’ performed better in mixture.

In general, at both the Freiburg and Uppsala sites ‘Tora’ grew better in

mixture than in its corresponding monoculture, not only together with ‘Lo-

den’ but also with other genotypes in the two- and three-genotype mixtures.

This indicates a competitive advantage of ‘Tora’ compared with the other

Salix genotypes. In a nutrient-limited environment, such as at the Rostock

site, the growth of ‘Tora’ in mixture is rather limited.
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4.4 Implications for biodiversity ecosystem function research

This thesis provides insights into plant-plant and plant-environment interac-

tions of a Salix short-rotation coppice system used to explore the biodiversity-

ecosystem function (BEF) theory. In Papers I-IV, ecosystem functions related

to productivity, litter decomposition and fungal community were analyzed to

explore the performance of genotypes that differ in their functional traits.

The first hypothesis (H1), on the importance of genetic richness for produc-

tivity, litter decomposition and fungal diversity, was only partly confirmed, as

only some specific genotype mixtures improved ecosystem functions. Over-

all, the results did not supply much supporting evidence for the major hy-

pothesis underlying biodiversity-ecosystem function theory, which states that

higher genetic diversity promotes ecosystem functions such as productivity

and decomposition (Cardinale et al., 2011; Duffy et al., 2017; Loreau, 2000).

Some studies have found that plant identity is more important for ecosys-

tem functions than genetic diversity, due to large differences between species

or genotypes in important functional traits (Mokany et al., 2008; Tedersoo

et al., 2016; Wardle et al., 2003). This was the basis for hypothesis H2

in this thesis. The results clearly indicate that individual genotypes had a

stronger effect than genetic diversity on productivity, litter decomposition

and partly fungal community. Under the assumption that functional traits are

less similar between taxonomically further related species, co-culture of tax-

onomically more distinct genotypes should affect ecosystem functions more

strongly than taxonomically closely related genotypes (hypothesis H3). This

hypothesis was only partly supported by the results obtained in this thesis.

This indicates that ecosystem functions are more strongly affected by the use

of functionally diverse community components than by a taxonomically close

relationship between plants. The results in this thesis also indicate that spe-

cific genotype combinations can favor some ecosystem functions, whereas

other genotype combinations are less favorable for some ecosystem func-

tions.
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5 Conclusions

• The characteristics of the individual Salix genotypes studied here were

more important than genetic richness for ecosystem functions related

to biomass production, litter decomposition and fungal diversity.

• The high-performing genotype ‘Tora’ had an overall negative effect

on the performance of mixed Salix communities and grew better in

mixture than in monoculture, but only under favorable soil conditions.

• Taxonomically closely related genotypes, with similar characteristics

in many functional traits, differed greatly in their performance when

grown in mixed communities.
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6 Future prospects

In this thesis, measurements on plantations were carried out during and af-

ter the first cutting cycle. Thus, plants may not yet have had a fully devel-

oped root system, which could lead to fewer interactions between genotypes.

The effects of genetic richness on productivity or fungal community might

thus appear less pronounced. The four genotypes studied differ in their root

growth and growth rate (Weih and Nordh, 2005). Thus, higher biomass pro-

duction in mixtures due to higher resource uptake and stronger niche differ-

entiation (Reich et al., 2012; Sapijanskas et al., 2013) might be expected in

subsequent rotations, as shoot growth rate usually increases after the first cut-

ting cycle (Fontana et al., 2016). Therefore, stronger interactions between

genotypes competing for resources can be expected, particularly in mono-

culture, and complementary use of resources in mixtures, especially in those

where ‘Jorr’ and ‘Loden’ are present. Certain genotypes, such as ‘Jorr’ and

‘Loden’, could increase overall shoot productivity as they potentially promote

canopy stratification due to their plant morphology and functional traits.

Greater differences in the composition of fungal communities in the fu-

ture can also be expected, especially in monocultures, as previous studies

have concluded that tree identity is of greater importance than host diversity

(Korkama et al., 2006; Schweitzer et al., 2008). As ectomycorrhizal commu-

nities increased strongly between summer 2016 and shoot harvest in spring

2017, a strong trend for ectomycorrhizal fungi in fungal community com-

position after the second cutting cycle (planned for spring 2020) can be ex-

pected in future studies, and possibly a greater difference in the composition

of specific ectomycorrhizal fungi contributing to the fungal community com-

position.

Future planned harvests will show how fungal community composition

has developed in monocultures and mixtures, and may provide insights into

specific genotype combinations that improve ecosystem functioning and

biomass production.
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