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Abstract

Mattias Aronsson.On 3D Fibre Measurements of Digitized Paper. Doctoral Thesis

ISSN 1401-6230, ISBN 91-576-6338-6

Paper is a material that suits many different purposes, and is therefore used exten-
sively. To be able to optimize the manufacturing parameters during the production
in a paper mill, it is of great importance to know as much as possible about the ma-
terial. Paper exists in many different qualities, and different paper grades can have
very different properties. There already exists many techniques to measure paper
properties, but nearly all are based on computerized image analysis of two spatial
dimensions, or not based on image analysis at all. Recently, the processing power of
computers has reached a level which makes it possible to analyze huge data sets, by
3D computerized image analysis. Most grades of paper consists of fibres connected
in a 3D network, together with fillers and surface coatings. We have focused on the
3D network of fibres, to provide techniques to look into, and perform calculations on
this network. Advantages of using image analysis is that if we can transform sam-
ples of paper into an accurate digital format, a computer can then be programmed
to analyze some of the properties not easily accessible by other means. Both me-
chanical strength and opacity depend on the geometry of the fibre network, so the
digital model could be useful for further analysis of these properties. Disadvantages
are that the conversion from physical to digital form will introduce artefacts and
this conversion is often time-consuming. Our work has been to develop a method
to construct 3D digital models of paper and to develop some useful measurements.
The digital models consist of efficient representations that enable our measurements
and also provide a good base for further development. The measurements consist
of a detailed fibre analysis, a few fibre network measures, and experiments to mea-
sure the fibre pore network. Both 2D and 3D based fibre segmentation algorithms
have been implemented. The image capturing process is crucial, but we still be-
lieve that the core problem is to improve the fibre segmentation. Especially, a good
reconstruction of the network requires a high percentage of the fibres to be found,
something that need further work to be accomplished. This thesis will emphasize
the image analysis part of the problem, even if there are as much to be said about
paper as a material.

Key words:volume images, image registration, filter design, fibre network, individ-
ual fibre segmentation, fibre properties estimation, visualization
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1 Introduction

This thesis will tell you about the efforts made to find and measure fibres in paper
samples, by using computerized image analysis. There are numerous steps involved
to implement these measurements, moreover we need to convert the paper sample
into a digital format suitable for computer based analysis. Thus a lot of program-
ming is needed, and especially the knowledge how to implement image analysis
methods on a computer in a robust and efficient way is essential. The focus is on
the image analysis, but some basic paper and fibre knowledge is necessary to under-
stand some of the properties of the image material we use. As you will see, we have
solved parts of the problem, but there are more to be done before this application
can be packaged as a “Plug and Play” piece of software.

Basically any problem suitable for image analysis involves the following steps:
(1) Decide what imaging device is suitable and make the arrangements to build
a working setup. This step transforms a continuous image from a sensor into a
digital image that we can manipulate with a computer. (2) Pre-processing of images.
This may be noise attenuation, lens corrections of the optical system, attenuating
artefacts from the imaging, or other adjustments that make the following steps more
robust. (3) Segmentation of the digital image, i.e., find the objects of interest. (4)
Represent the objects found in a more convenient format, to facilitate calculations
of properties/features. (5) Measure properties of interst. (6) Interpretation of results.

Some of the challenges for this specific project have been the handling of large
amounts of data and the segmentation of individual fibres, which is often the most
difficult part of the problem. It is no coincidence, as the segmentation step basically
gives the computer the ability to see and interpret the image, which is no small feat.
As always with computers and programming, there are lots of special details that
need proper care to make the source code behave correctly.

1.1 Papermaking

The paper sample we have used for most of our analysis was made in the paper
machine KM7 of the Skoghall Mill outside Karlstad, Sweden. Schematics over the
machine can be seen in Figure 1. The length of this machine is around 250 metres,
and the new and bigger KM8 is almost 300 metres long! Also the width of the
KM8 paper reels are very wide, 8.1 metres. You may realize the importance to
minimize the number ofpaper jams, since when this occurs, it takes a lot of time
to reset the process and attain full speed again. Another somewhat amazing detail
about paper manufacturing is the speed of paper formation. Modern, large paper
machines manufacturing lightweight grades, e.g., newsprint, can run at speeds up
to 40 m/s (i.e. 144 kph or 90 mph!). Heavier paper grades like board can not be
manufactured at such speeds, KM7 in Skoghall runs at about 9 m/s and the new
and bigger KM8 at about 13 m/min. During a “flawless” year KM8 will produce
more than 300,000,000 kg of paper, or stated differently, produce more than 10kg
of paper in a single second.

The environmental aspects of the paper manufacturing process have gained more
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and more interest in recent decades, so now paper material is extensively recycled
and reused when making new paper. The chemicals needed are also recycled inter-
nally during the process, minimizing the waste. As background information, it may
be of interest to know the basics in paper manufacturing. Therefore we will give
a short introduction to this subject. When the trees are harvested, the branches are
removed and then the tree trunks are debarked and chopped into small wood chips.
There are basically three different processes to convert the wood chips into free
fibres: (a) Mechanical pulping uses direct grinding of the wood logs between rotat-
ing cylinders to get free fibres; (b) Thermo-mechanical pulping (TMP) is a process
in which chips are mechanically refined after being heated in a pressurized envi-
ronment; (c) Chemical pulping, where the wood chips are delignified by chemical
solvents in a digester.

Figure 1: The Skoghall Mill KM7 paper machine close to Karlstad, Sweden.

As the fibres and some of the other material still left in the diluted fibre suspen-
sion may have large colour variations, a bleaching step may be used to improve the
colour consistency. Common chemicals used are chlorine dioxide, hydrogen perox-
ide, ozone, or oxygen. The paper forming takes place in the paper machine and in
the first step at the headbox, the much diluted suspension of water and fibres (less
than 1% fibre material) is injected either in-between an upper and lower moving
wire, or onto a moving wire. The “trick” of using different speeds of the wire and
the injected fluid greatly influence how the fibres are oriented in the paper. The in-
duced forces will stretch and align many of the fibres along the Machine Direction
(MD — the direction of material flow in a paper machine). The forces due to pres-
sure and heat have only minor influence on the fibre orientations. The wire allows
some support for the fibres while they form the network and is still sparse enough to
let most of the water pass through during the initial dewatering. The press section
then shapes the paper material into a more uniformly thick material and during the
gradual dewatering sequence between the many heated and pressurized cylinders,
the rest of the excessive water is removed. The normal moisture content of paper
is a few percent. The middle part of the paper machine, the drying section (see
Figure 1), is necessarily huge, since the process needs to remove water gradually to
prevent ruptures in the continuous paper sheet. Acalenderingsection will then im-
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prove the surface smoothness. Finally, the paper is wound onto large reels that can
hold several kilometres of paper, with automatic switching between reels while the
machine is operating at full speed. The entire process is completely automated to
enable highest possible yield, since an investment as large as this (e.g. 400 million
USD) will need to run at top speed for many years to become profitable. Since the
large papermaking machines are occupied by producing paper for customers, and it
is critical that no tests interrupt this process, these paper machine are not suitable
for research experiments. Instead smaller ones that have many options for process
tuning are used. See for example the STFI EuroFEX (Mähler, 2000).

Our main tool for analyzing paper will be computerized image analysis. That
is, we will develop software to enable a computer to perform the measurements.
Both 2D and 3D image analysis have been used. Since the papermaking process
does apply large forces on the fibres, they have a main orientation. This is roughly
aligned with the MD. If we create images that are perpendicular to MD, many of
the fibre cross-sections can be found. We focus on the individual fibres, but there
can be other substances in paper such as: fibre fractions, filler, surface coatings, and
various residues from the papermaking process. Our sample consists of fibres and
fibre fractions. The following sections will describe the details of how we gradually
transform a small piece of paper into a digital representation together with some
examples of measurements. After the conclusions, there is a section with the pub-
lished papers. As an alternative to reading the full papers, a quick glance at Section
4 will highlight the main topic of each paper.

1.2 The “3D tracking of fibres in paper” project

The goal of this project was to provide a new kind of virtual microscope, enabling
users to look inside paper samples together with a computer supported ability to
identify fibres and make measurements directly in the 3D structure. Especially the
possibility to analyze fibres in the paper, i.e. “in situ”, would provide new measure-
ments not previously available by methods that require the paper to be dissolved.
Although our imaging technique also destroys the sample during imaging, prevent-
ing more than one imaging technique to be used, we do retain the inner structure
of paper well. Alternatives, as the successful STFI Fibre Master (Karlsson and
Fransson, 2000) uses 2D image analysis to gather statistical information on fibres
in dissolved paper samples, and can analyze geometrical properties of thousands of
fibres in a few minutes — a very efficient approach. We cannot match this fibre
count, but instead provide a detailed 3D analysis of some of the fibres in a paper
sample.

The project was initiated jointly by Professors Örjan Sävborg, StoraEnso Re-
search, Gunilla Borgefors, Centre for Image Analysis (CBA), and Björn Kruse,
Linköping University — Campus Norrköping, to begin a study that would inves-
tigate how paper and fibre analysis could benefit from 3D image analysis. It was
called “3D tracking of fibres in paper”, indicating the need to find individual fi-
bres in 3D images of paper, for measurement purposes. Two PhD students were
assigned to the project, Mattias Aronsson (CBA) and Arash Fayyazi (Linköping
University — Campus Norrköping). The rather large project was eventually divided
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into two parts: (1) individual fibre segmentation, by Aronsson and (2) paper struc-
ture segmentation, by Fayyazi. The idea was that these two parts would provide
complementary information about the paper structure and furthermore be combined
to cover a larger aspect of paper and fibre properties. Unfortunately, due to both the
complexity of this project and time constraints, we were able to fulfil only parts of
this goal. As can be seen by the two thesis generated from this project, we have
moved the knowledge on how to analyze paper in three spatial dimensions forward
and have also been able to emphasize the special demands and problems for this
task. For detailed information of part-2, see the Thesis of Fayyazi (2002).

The national programme VISIT (VISual Information Technology), was initiated
by Ewert Bengtsson (CBA), and one of the goals was to strengthen the cooperation
between image analysis research groups in Sweden. Without the financial support
from the Swedish Foundation for Strategic Research (SSF) the many interesting
projects would not have been possible. See Bergholm (2002) for details of the other
projects in the VISIT programme.

1.3 Paper research

Paper, although common in everyday life, is a complex material which researchers
in various fields continuously try to learn more about. The practical use of paper is
immense, as well as the different kinds of paper grades available. Each paper type
is optimized for its intended use, e.g., tissue paper, print paper, milk cartons, and
cardboard boxes. Tissue should be able to absorb a lot of fluid. Print paper should
be opaque enough so that the text on the opposite side do not interfere, and also have
a surface suitable for the printing technique used, enabling sharp text and images.
A milk carton should be light and stiff so it does not flex too much when we hold it,
have an acceptable surface to allow printing of appealing graphics so people actually
buy it, and also enable an efficient packaging technique to be used. A multi-layer
structure like the one used for the Skoghall board is inteded to combine high stiffness
with low weight. In order to be able to produce sharp 90◦ corners, it is also necessary
that the structure can produce well defined deformations so that the folding does not
produce breaks (cracks) in either of the two surfaces of the board. So manufacturing
a milk-carton box is Hi-Tech! General boxes for packaging should be durable, to be
able to withstand heavy loads without ruptures. There are many different research
projects that deal with analysis of paper and fibres, since the process from tree to
final paper is quite complex. As paper is made of wood, image analysis may be
used early in the paper manufacturing process by, e.g., microwave tomography of
logs (Kaestner, 2002) to automatically sort and split the logs into pieces of various
qualities. By using image analysis on cross-sections, it is possible to estimate wood
properties by measuring the fibre morphology, i.e., detailed shape analysis, as was
done in Moëll (2001). See Figure 2 for an example of how fibres are organized
within the tree. The entire path from forest to final paper spans a wide range of
research topics. Paper surface treatment is important for the printing properties of
paper, while fibre bonds influences the mechanical strength of paper. To understand
all these aspects we need knowledge of mechanical properties, chemical surface
properties, and more, to enable free fibres from the dissolved chips of wood to
bond into a network with desirable properties. All these steps must be possible to

12



implement as an industrial process with high demands on efficiency and tolerance
on the paper properties.

Figure 2: Transverse section from Scots pine, imaged by confocal microscopy. Size
of image is 625×625µm2. From Moëll (2001).

When we started the “3D tracking of fibres in paper” project, there was only
one previous attempt (Yang et al., 1978) to analyse the 3D structure of real paper
samples, as far as we are aware. That project involved tracing fibre contours by
hand in cross-sectional images, i.e., a small amount of computer support. Hence,
the manual work needed was enormous for even tiny volumes. More recent research
have digitized the 3D wood structure, i.e. to view and measure properties while the
fibres are still aggregated in bundles, similar to the conditions inside trees. Using a
combination of microtomy and light microscopy, Bardage (2001) and Bardage and
Daniel (2002) analyzed samples of Norway spruce, regarding fibre dimensions in
three spatial dimensions and differences in collapse behaviour. There have been
several attempts to create and measure properties of simulated 3D paper volumes
that are designed to resemble actual paper to various degrees. See, e.g. Wang and
Shaler (1998) and Niskanen et al. (1997). During five years of this project, we have
seen only one other project involved in recreating the 3D structure of real paper
samples, performed at the Pulp and Paper Research Institute (PFI), Norway. See
Section 2.4 for more details. We believe that our work can help others to understand
the special problems that are important for dealing with 3D fibre analysis, and our
attempts may provide a base for others interested in this topic.

Fibres provide trees with both the support and the transport of nutrients. When
cells are formed inside a tree they start as cylinder-shaped liquid filled protoplasms.
Then slowly cell wall material is laid down towards the outer regions and the cell
is transformed into a multi-layered fibre wall, with a hole in the middle. When the
cell has passed the lignification step (strengthens the cell), it resembles a tube, i.e.,
a hollow structure that can transport nutrition. During the lifespan of the tree, the
fibre remains in this mode. Even if there are different cell types in a tree, we are only
interested in those that provide the strength of paper. These cells are called fibres
in hardwood (e.g. birch and willow) and tracheids in softwood (e.g. spruce and
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cedar). For softwood tree species 90–95% of the tree volume consists of tracheids
(fibres), the rest is parenchyma and epithelial cells. Hardwood tree species may
have more types of cells. A tree is truly ingeniously “designed”, since it has the
ability to grow and produce oxygen for us during its lifetime and afterwards come
to use as boards for construction or paper sheets. The tree is really a very optimized
production facility, and if you reflect upon this brilliant system that enables growth
and transport of nutritients, it will permanently alter your mind regarding the green
“stuff” outside.

Even if different tree species have large variations in fibre shape and size, a
spruce or pine fibre (common in Swedish paper mills) have an approximate average
length of 4mm and have 10–60µm diameter, see Lundqvist (1999). Cotton and
flax fibres are much longer, up to 70mm in length. This is important, as we need to
decide what sampling resolution to use when digitizing the fibres. In Figure 3 there
is a set of images of the same fibre cross-section at different resolutions. By looking
at some images similar to this one, we concluded that a resolution of about 1µm is
probably necessary to have a good chance of identifying fibres.

Figure 3: Fibre cluster sampled at 0.7µm, 1.4µm, 2.8µm, and 5.6µm.

One may tend to think that 1µm is a very high resolution to perform analysis.
It is worth mentioning that there is ongoing work to create detailed models of single
fibres, i.e., submicron resolution will be needed. At the Wood Ultrastructure Re-
search Centre (WURC) at the Swedish University of Agricultural Sciences (SLU),
Jonas Brändström has worked with models for the tracheid cell wall on Norwegian
spruce (Brändström, 2002). At the other end of the scale, for entire paper sheets it
is necessary to measure, e.g., fluctuation in fibre distributions. An effect calledfloc-
culationcases the fibres to be unevenly distibuted. The measure of this uneveness is
called formation. Ideally, paper should have a smooth surface with similar proper-
ties all over the paper sheet. Clusters of nearby fibres tend to form small aggregates,
and these do not form into a homogeneous material as well as free fibres. To be
able to measure this effect, a piece of paper with at least a few decimetres width is
required.

A 3D X-ray based digitization of felt (a fibrous material like paper but often
thicker and less porous) has been made by Thibault et al. (2002), but as far as we
know, no further analysis of this digital sample has been made yet. Compared to
our type of paper, felt is less porous, and it may be even harder to identify individ-
ual fibres in such material. The more the fibres are linked together, the harder the
subdivisions will be.

Our project is between the scale of modelling a single fibre and a paper sheet.
Furthermore, it is unique in the sense that we do not only suggest a viable procedure
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to create a digitization of paper samples, but also have worked on methods to seg-
ment the paper into individual fibres to enable measurements on both the fibres and
the network. Building a digital model of paper, it does not suffice to only digitize the
paper sample. Instead, the segmentation of individual fibres will enable many more
possibilities to use the digital data as a real model of the paper sample. Although
we are not fully satisfied with the amount of fibres we can find, it is an important
step forward.

There are other paper research projects that are more futuristic and inter-discipli-
nary, e.g., to develop techniques to print an electronic display on paper. This would
make it possible to create a book of 100 programmable pages, add a computer, and
Windows 2012 to be able to download your entire library of e-books. Maybe even
read it if the Operating System boots without any errors ...

1.4 Why 3D image analysis?

Why is image analysis essential, and furthermore in three spatial dimensions? Be-
cause, for now, there are no other ways to measure properties of entire fibres in
paper samples! Image analysis combines computers high processing power with
the possibilities of available imaging equipments to create 3D images. The image
analysis approach has at least one unique property, and that is to convert the entire
geometric structure of the paper sample into a digital format, which is required in
order to use a computer for the analysis. Naturally, it is not possible to capture ev-
ery aspect of a complicated material such as paper, but converting the geometrical
structure of paper with micrometer resolution gives a unique opportunity to do some
serious “number crunching” of the paper sample properties. By realizing that the
information we obtain from the digitization process is at a low-level, since it only
tells us which samples on a 3D rectangular grid that are voids or not, it is easy to
imagine that it requires considerable effort to find what we denote as “fibres”, which
is a high-level description of the objects we are interested in.

We know that fibres are structures that are distributed inside a 3D structure (the
paper), so using any lower dimension than three, will result in loss of vital informa-
tion. Forsomeproperties, e.g., fibre diameter, you may assume that the fibre has
the same diameter along its length, and use 2D image analysis instead. However,
this is a much less accurate approach, than actually measuring the diameter along
the whole length to verify whether the width changes. The attainable precision of
our approach is thus very high, and if we are able to minimize the artefacts intro-
duced by digitization and software, an estimate of the absolute accuracy would be
possible. For now, we have focused on the implementation of the reconstruction
and fibre segmentation, without exactly verifying the absolute accuracy attainable.
This could be troublesome, since it may require an alternative technique to be abso-
lutely sure about the accuracy. Nonetheless, 3D image analysis of paper definitely
provides a new higher level of detail, when studying the internal structure of paper.
See Figure 4.

Generally, 3D analysis tends to be much more complex than 2D analysis of
images. Thus, it is seldom a good idea to use 3D images when 2D images would
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Figure 4: Rendering of segmented fibre, using the technique in Section 3.8.3.

suffice. The basic difference between 2D and 3D images is that a unique position
in each image is specified by(x, y) and (x, y, z), thus two or three integers are
needed. See Figure 5 for an example of images stored as rectangular/cubic (2D/3D)
grids, the most common format. There do exist other formats, e.g., hexagonal grids,
which has some advantages, e.g., that a single connectivity (and distance) of six
local neighbours for both the foreground and background regions can be used. In
square and cubic grids it is important to use different connectivity for foreground and
background, see Rosenfeld (1979) for details. Traditionally, each sampled value in
a 2D image is calledpixeland in a 3D image avoxel.

Z

2D Image 3D Image

XX

Y Y

Figure 5: Principal difference between 2D and 3D images is the number of co-
ordinates needed to access a specific pixel/voxel.

As you will see, even if we have had limited success in recreating the entire
fibre network, none of the 3D measures on the individual fibres would be possible if

16



only 2D images were available. When an improved segmentation method becomes
available, the fibre measures we have developed can benefit from this, and some
of the properties of the network structure (bond area, mean free path, orientation
distributions, etc.) will be possible to estimate. Thus, the key to unlocking the inter-
nal paper network structure is an accurate segmentation of many of the individual
fibres, a much more intricate task than the simple segmentation that differentiates
fibre material and void.

The processing power of computers nowadays allows more advanced computa-
tions, so three spatial dimensions are used in a variety of applications. One of the
areas where 3D image analysis really has displayed some of its potential is in med-
ical imaging (Udupa and Herman, 1999), where it is now commonplace to create
3D images of the brain and internal structures of the human body. Without proper
software, some of the imaging equipment used as, e.g., CT, PET, SPECT and MR,
which all are ingeniously developed, would not be as useful as they are now.

1.5 Digital 3D model of paper

Simplification of a problem to a mathematical model that captures the most im-
portant properties is often required. Even with today’s computers that are able to
perform blazingly fast calculations, the computational budget will always be a lim-
iting factor, so it is important to not overdo the amount of detail in the model. By
using a 3D voxel model, we sample the paper at a 3D rectangular grid and provide
at each sample point (voxel) a value of the estimated mean atomic weight. This can
be used to differentiate between fibre materials and void (pockets), see Figure 7.
Because of the large amount of voxels needed to represent even a tiny paper sample,
the main task is to transform this low-level information into a high-level one, i.e.
individual fibres. See example of a voxel model of a single fibre in Figure 6.

Figure 6: Example of a part of a single fibre, as a voxel model.

17



We thus model the object in all three spatial dimensions but allow only a fixed
level of detail, using a smallest unit, the voxel. This creates volumes with a bit of
“Lego-ish”-style when rendered at high magnification, but simplifies the processing,
since many subtasks only require local calculations to manipulate the volume, e.g.
filtering etc. One important topic is how to choose the size of the voxels. The best
and simplest way is to use cubic voxels as then the resolution is equal along all
three dimensions. This is often not possible, due to the acquisition process. Then
we have to take the different resolutions into account during the calculations. Less
resolution along one co-ordinate axis will mean that we have less information about
the geometry in that particular direction. It is not possible to fill in that missing
information, but we can at least assume locally smooth behaviour of the fibres and
interpolate, which is a small improvement that will attenuate the artificial jaggedness
introduced by the digitization process. Due to the relatively sparse sampling we
cannot use simple interpolation, but need more advanced methods.

We use 0.7×0.7×5µm3 parallelopiped shaped voxels, as a compromise be-
tween getting high enough resolution to be able to find the fibres and as few voxels
possible to be able to minimize the memory requirements. Due to the imaging pro-
cess the voxels are not cubic and this is one of many complications for us.

Figure 7: Voxel model of a milk-carton paper sample, size 500×768×102 voxels.
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2 Data acquisition

Basically there exist two main approaches to create digital volumes: (1) tomogra-
phy and (2) serial sectioning by microtome cutting, to create stacks of 2D images.
We were fortunate enough to receive several data sets, but due to quality and time
limitations we have concentrated on one specific set, that we believe had the greatest
potential for image analysis. Örjan Sävborg and Olle Henningsson at the StoraEnso
Research facility in Falun, put much effort into making this data set. We are really
happy about these data, as such a unique data set provides an excellent opportunity
to test the robustness and accuracy of developed methods on a real paper sample.

2.1 Sample preparation and scanning

Many of the best imaging devices available cannot capture 3D images, so we need
to obtain a series of 2D images instead. The machine that makes this possible is
a microtome, i.e., a diamond (or glass) blade equipped high precision cutter. See
Figure 8. This high-tech “cheese cutter” give extremely thin, in our case 1µm thin
slices. Special “Ultra Microtomes” can cut even thinner sections down to 50nm.
There are other techniques, such as laser evaporation that “boils off” thin layers of
material, but they may produce surfaces that are uneven and this is not good enough
for our purpose. Some examples of imaging devices are given below.

Figure 8: Example of two microtomes. Even if there are quite some years between
these two models, they look rather similar.

2.2 Light Microscopy

The first data set we had available was kindly provided by the Swedish Pulp and
Paper Research Institute (STFI, 2002) and prepared by Joanna Hornatowska. A
small digitized paper sample was created, by a combination of slicing off thin 1µm
slices of paper embedded in plastic and manually placing these on object glasses,
then staining with toluene blue to enhance the contrast before imaging with a CCD
(Charge Coupled Device) camera. See Figure 9 for an example. A good property
of this set is its high dynamics, since the optical system can capture a wide range
of opacity through the thin samples. It is a delicate manual process to slice off mi-
crometer thin sections and manually put these on object glasses. The amount of
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geometrical distortion, or even loss of some slices, introduced by this process, re-
quires a complex registration procedure, i.e. geometrical correction. We tried an
approach based on vector displacement fields, where you manually identify corre-
sponding “landmarks” in two adjacent images. This will create a set of 2D displace-
ment vectors at the landmark co-ordinates that can be interpolated into a continuous
2D displacement field to correct the entire image. Even if the distortions were at-
tenuated, it was not good enough to be useful for a complete volume reconstruction.
At that time, when we were developing and testing this approach, we did not realize
how complicated this would be, a kind of “hubris” that led to one or two statements
of the kind “this will soon be solved”. It is easy to believe that just because you can
easily identify a fibre using your eyes, it would only be a matter of coding to let the
computer do the same. However, some hands-on experience will tell you that few
image analysis problems are trivial.

Confocal microscopes are a special type of light microscopes that has an optical
slicing capability. The lens system uses a pinhole to create a very thin focal plane,
this makes it possible to collect light at a well defined depth. More porous paper
grades than milk cartons, that we are interested in, may be well suited for confocal
light microscopes.

Figure 9: Light microscopy image of LWC paper cross-section. Prepared and im-
aged by Joanna Hornatowska at STFI.

2.3 Scanning Electron Microscopy

Scanning electron microscopy (SEM) has been used for many imaging applications.
Most people have seen the images of a CPU chip or head of a fly in books, with an
amazing resolution of small details, far better than any optical system based on
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visible light can approach. See Figure 10 and Figure 11 for examples of a circuit
board and a tiny knot of a hair at high magnification.

Figure 10: LEO SEM image of small part of a printed circuit board, including
surface bonded IC and resistors. Copyrightc© LEO Electron Microscopy Ltd.

Figure 11: LEO SEM image of a human hair, tied into a tiny knot. Just as in the
Wella shampoo commercials you can see the surface breaking up a bit. Copyright
c© LEO Electron Microscopy Ltd.

A modern SEM, as the LEO 435VP that was used here, has an ultimate reso-
lution in the nanometre scale for an ideal test case. Our use of SEM to cover fibre
details around 1µm, thus by no way stresses the equipment to the limit. Using back-
scatter mode, which approximately estimates sample atomic density, we were able
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to use the paper sample without any preparations except for embedding in epoxy, to
make a stable block of material. The rather compact desktop SEM device, see Fig-
ure 12, consist of a camera module, a computer (Windows based PC), two monitors
and an input devices.

Since SEM is not a true 3D imaging device, we need the microtome to slice off
and capture the inner parts of the paper. One crucial insight to fibre imaging was
that it is important to use the ability of the SEM camera to image the surface of the
remaining paper sample, instead of the thin section sliced off during each iteration
of imaging. This approach will result in much lower geometrical distortions, as the
paper surface we image has a good support. This is a difference compared to LM,
where each slice was imaged by collecting the light that pass through it. The level
of contrast possible is mainly a question of acquisition time, but as we need to make
many 2D images and also slice the sample between each imaging session, it was
important to minimizing the time for each slice. Selecting backscatter mode, results
in nearly binary images, which is an advantage for us, since we are only interested in
differentiating between fibre-wall material and void in this application. To improve
the discrimination ability even further, we could have increased the acquisition time
to raise the contrast and simultaneously attenuate the background noise.

2.4 X-ray micro tomography

At Trondheim University in Norway, Emil Samuelsen (NTNU), Rune Holmstad,
Christine Antoine, Per Nygård and Torbjørn Helle, at the Norwegian Pulp and Paper
Research Institute (PFI), have created a 3D model of paper by using the European
Synchrotron Radiation Facility (ESRF, 2002) in Grenoble, France. To get sufficient
resolution, they used phase-contrast mode, which locates boundaries between fibre
material and void. Using image analysis they could convert back to the preferred
filled fibre “mode”. Some issues of artefacts due to the tomography approach (Her-
man, 1980), are problems that needed attention. This data set was made available to
us just recently and we have unfortunately not been able to explore it as much as we
would have wanted. It is interesting to compare various existing techniques to ac-
quire 3D images from paper samples, since the imaging process has a large impact
of how well it is possible to analyze the data. For more details on this approach, see
Samuelsen et al. (1999).

2.5 Combining micro tomography and SEM

We decided to combine a Scanning Electron Microscope (SEM) with a microtome,
to create a stack of 2D images that we later will assemble into a 3D image. Cutting
paper with this very sharp knife does expose the knife to high pressures, since the
area of contact is so small. That is why we make five 1µm cuts instead of one 5µm
cut between each imaging step, for the SEM setup we describe below. Another trick
that can be used is to add water, which let the thin paper section we cut off float on
top of the water which can prevent the slice to break apart during cutting. The SEM
camera is equipped with a computer for the imaging and parameter setup, and was
also used to store the captured images. The process, which requires some delicate
manual manipulation, is described below:
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Figure 12: The LEO Scanning Electron Microscope we used. Copyrightc© LEO
Electron Microscopy Ltd.

· Embed the sample in Epoxy resin, together with Rayon reference wires at the
upper and lower surfaces

· RepeatN times

· Capture cut-surface withM overlapping 2D images, by manually repo-
sitioning the sample in the SEM camera

· RepeatM − 1 times

· Move the SEM camera capture area 80–90% of the image width

· Capture cut-surface

· End

· Use microtome to slice off 5µm of the outermost layer, by a sequence
of five 1µm cuts.

· End

· End

After this process, a set of 2D images that captures the internal structure is the
result, see Figure 13.
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Figure 13: SEM image of milk-carton paper cross-section. Prepared and imaged by
Örjan Sävborg and Olle Henningsson at StoraEnso Research.

2.6 Imaging conclusions

The SEM/microtome setup seems to be the best choice, when we compare the pros.
and cons. of the three imaging setups in Sections 2.2, 2.3, and 2.4. Most important
benefits are the level of detail, ease of first level segmentation between fibre and
void, and low geometrical distortions. However, X-ray micro-tomography has some
important benefits, mainly because two issues are solved by the X-ray approach: (1)
the tedious manual sectioning of the volume and (2) the need of registration is elim-
inated. Tomography manufacturers like Siemens, Philips and LEO, keep improving
the resolution and contrast, so this technique has great future potential to be a good
alternative to slicing based approaches. The level of automation possible is much
higher, since the slicing is performed “virtually” by sending a thin fan of X-rays
through the sample and rotate the sample between each image capture. However,
the artefacts caused by the tomography process also need to be attenuated to enable
the delicate fibre segmentation. Optical microscopes can be used with great success,
performing 2D image analysis. But they seem less suitable for volume reconstruc-
tions, since they generate images with large distortions and also the segmentation,
even only to separate between fibre and void, is much more difficult to carry out in
these images. Note that when we say large distortions, we mean something above
0.01mm. In other applications this may be acceptable, while it is far too large for
the average fibre diameter of 0.01–0.05mm. There are really many possibilites to
combine different devices to acquire the images of interest. Confocal microscopes
have been used to create 3D volumes, although as many paper grades are dense and
quite thick, it will not be possible to image very deep through the surface of dense
paper grades. Instead, a combination of sectioning by a microtome and imaging
with a confocal microscopy could be an alternative technique to create digital 3D
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paper samples. This decreases the amount of sectioning needed, as the confocal
microscope can create several images at different depths between each sectioning
pass.

There are many different 3D projects currently in progress, which use different
types of imaging techniques to digitize as diverse things as viruses, cells, beetles,
frogs, humans and more. In addition to the new knowledge this can eventually
provide, it is also great fun just watching the images. See Figure 14 for an example
of a stag beetle, imaged using X-ray micro tomography.

Figure 14: An X-rayed beetle, voxelsize 80µm. Copyright c© Dr Graham R Davis
at Queen Mary, University of London, UK.
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3 Methods

In this section, we first give a general introduction about some of the specific issues
about 3D image analysis that we believe is important to keep in mind when you
read the papers included in this Thesis. Thereafter we describe the process we
have developed to transform paper samples into digital models, together with some
measurements.

3.1 Implementing efficient 3D image analysis algorithms

It is a huge leap in storage requirements, performing analysis in three spatial dimen-
sions instead of two spatial dimensions. Efficient calculations of large data sets will
require methods that do not need the entire 3D image to be loaded into the mem-
ory of the computer (RAM — the Random Access Memory, used for fast access to
data). Redesigning methods so that efficient load/store of subparts of the image is
possible during calculations presents quite a challenge by itself. We have not fo-
cused our methods on this aspect. Analysis of 3D images has much to benefit from
parallel processing techniques, since many problems need massive sets of computa-
tions. The additional problem is then to develop image analysis algorithms suitable
for parallel execution, that speed up calculations by solving independent subtasks
on different Central Processing Units (CPU, e.g., Intel Pentium-4 and AMD Athlon)
and combining the results. As 3D images requires much more storage space, it is a
good idea to add various compression techniques that are suitable for fibre images.
Using a high-resolution grey-level 2D image means something like a 1024×1024
pixel image, requiring 1 Mbyte of storage space in RAM. If we need the same res-
olution for measures along three co-ordinate axes, we have a 3D image consisting
of 1024×1024×1024 voxels and need 1 Gbyte of storage. Disc space for file stor-
age is seldom a limiting factor nowadays, since 80 Gbyte drives are considered the
default purchase. Even if RAM for computers have shown a similar impressive in-
crease in capacity, modern computers have 128–1024 Mbyte of RAM. This is used
for the various programs that the operating system consists of, a file cache to speed
up hard disc access and the rest for the applications, e.g., our fibre segmentation
software. Simple things, as storing intermediate results, can be a real bottle-neck
working with 3D images. Therefore, it is important to design with data size in mind,
as well as efficiency of calculations. For 3D images that cannot be held entirely in
RAM, the disc access pattern from the algorithms also need to be optimized with
respect to the file cache system in the operating system, otherwise severe perfor-
mance degradation will occur. In addition to the complexity of algorithmic design,
also some computer science aspects have to be considered for optimal performance.
Each of these issues is rather complex, so we have not incorporated them as much
as we would have liked. More optimization according to above issues would defi-
nitely increase the possible size of the paper sample, as well as decrease the time of
computation.

Many of our methods are based on 2D/3D distance transformations on an image,
which will be denoted asDT, and DT〈parameters〉 when the specific type is of
importance. A DT has one image as parameter, and the result is also an image,
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which we denote asDTimage. For details about DTs, see Borgefors (1986, 1994,
1996). A DT can be used for N:th dimensional images, but we use 2D and 3D DTs.
Below we assume 3D images, thusvoxelsare used. The DT measures for each
voxel its shortest distance to the voxel set initiated to zero before the calculation
(all other voxels are initialized to the highest possible value, as we mostly use an
8-bit unsigned byte data type, this is 255, but in principle∞). There are different
types of DTs, but we will always use the Chamfer based DT with integer parameters
optimized for minimum error and maximum coverage using the small unsigned byte
data type, as we do not need exact distance measures, instead favor fastest possible
calculations. The Chamfer DT can be calculated very fast by small local masks,
that scan two times through the image/volume. If very exact measures are needed,
a chamfer euclidean transform can be used (Danielsson, 1980). This method takes
more time but have a maximum error of only 0.09 pixels, still using a fixed number
of scans (four needed).

As measuring distances is a very common task, we need an efficient method for
that, and the Chamfer DT provides that. Sometimes we need to also keep the infor-
mation from which region we measure distance, then alabelled DT is used. Also
reverse DTsare used. These are similar to implement and are useful for spreading
a discrete set of non-zero valued pixels/voxels, the distance of spreading based on
the initial values. Additionally, some cases require that the DT is measured as the
shortest path along restricted set of voxels. This DT is called aconstrained DT.
A nice example is a maze, where you need to find the shortest path from start to
exit, and are not allowed to move through walls. Instead of using a graph search
method as depth first search, a restricted DT will calculate the path for you. One
disadvantage of restricted DTs is that the calculation time is dependent on the im-
age contents, which is not the case for basic DTs. Thus, an sequence of chamfer
updates are needed until no change in the DTimage occurs. An example of a worst-
case scenario is a spiral shaped figure. Apparently, there are many different types of
distance measures in digital images, and we will make heavy use of these methods.

A simple compression technique, that we experimented with, is the Run Length
Encoding (RLE). RLE is computationally efficient, simple to implement and can
provide an algorithm with streaming data, i.e., you can decompress “on-the-fly”
and do not need to decompress the entire volume into RAM at once, see Figure 15.
For the common tasks of looping through the 3D image in a fixedx−y−z order, we
can compress in that same order. For the binarized volume we obtained compression
ratios around 20, using RLE. For example, instead of needing 230 Mbyte, 12 Mbyte
is enough. Other techniques, e.g., Octrees (Wilhelms and Gelder, 1990), may be
more suitable for algorithms that require 3D sub-blocks of the image in each step.

Another type of compression is how we encode values. For example, during
rendering, we need to store the normal of each voxel to be able to create realistic
images of the model. It is not a good idea to store this 3D vector as a triple float
data type, since this requires 24 bytes of memory for each voxel. Instead, we need
to encode the discrete set of directions with as few bits as possible, and can take
advantage of the fact that normal vectors are unit-length. It is sufficient to store
the direction using spherical co-ordinates. Allowing, e.g., 256 different directions
along each co-ordinate in the (φ,θ) system, it is enough using only two bytes for
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Figure 15: Run Length Encoding is a general compression technique. Even if it
mostly compresses less than, e.g., bzip2, its strength is the efficient encode/decode
process.

each normal vector, resulting in a compression about 12 times.

A voxel is our smallest building block, similar to a physical atom model of an
arbitrary object. There is a huge number of voxels in many 3D images, and this
makes it necessary to be extremely restrictive on the number of bits for each voxel
property we need to store. Compare to, e.g., CAD-like surface structure models
with spline-based patches. As each of these can cover a larger piece of the object,
it is possible to use more bytes for each patch, but even these need to be optimized
for size. For example, an accurate CAD model of a car engine requires millions
of triangular patches for each part with complex non-smooth shape. The preferable
digital representation of an object is dependent on what object we want to digitize
and to what degree of geometrical accuracy. For fibres, we are confident that the
voxel based model is optimal, since the representation is very compact, considering
the amount of sample points from the SEM camera we have. One of the proper-
ties that makes voxel images compact, is the 3D rectangular grid restriction, which
enable the use of implicit(x, y, z) co-ordinates for the centre position of each voxel.

We are using a combination of MATLAB
TM

, C (stand alone as well as for the
MATLAB MEX-files and the IMP program, see Nordin (1997)) and C++ code to
achieve reasonable computation times for the methods used. For massive com-
putations it is important to choose a language that compiles the code and since
C/C++ is well known for its efficiency, we use these. Since C++ do not have ba-
sic matrix calculus, we use the Template Numerical Toolkit (TNT) package (Pozo,
2002) to be able to write code with vector and matrix calculations. The Standard
Template Library (STL) for some of the data types is needed. A basic 3D im-
age class data type has been implemented to allow a common base for coding,
load/store image, simple algorithms, etc. You may download the software from
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www.cb.uu.se/˜ mattiasa/thesis.

3.2 Raw data

We want our captured 2D images to each lie in a(x, y) co-ordinate system, with the
third axis,z, along the direction of microtome slicing. Contrary to common use in
paper science, the paper surface will lie in the(x, z) co-ordinate system. Thus, the
y-axis is approximately normal to the surface, not thez-axis. See Figure 16.

Machine Direction (MD) = Z

X

Y

Z

Cross Machine direction (CD) = X

Figure 16: This is how we define the co-ordinate axes.

We have a piece of paper that we want to digitize, i.e. convert into a set of
digital samples evenly spread throughout the paper. As we concluded earlier, the
SEM camera will be used, which is a 2D image capturing device. We combine this
camera with a microtome to be able to capture the inner parts of the paper sam-
ple. A sequence ofM × N images, will be used as raw image data for the volume
reconstruction.N is the number ofz slices, determined by how many times the
microtome is used.M is the number of overlapping images for eachz slice, used to
get a wider field of view than 1024×768, which the sensor in the SEM camera pro-
vides. Since we used three overlapping images (M = 3) and 102 slices (N = 102),
we have a set of 306 images. The following subsections will fill in the details about:
registering each triplet of images into a set of wide images; register wide images by
pair-wise comparison using landmarks to form a 3D image; shading correction and
filtering to enable the use of a global threshold as binarization. Binarization is the
first level of segmentation — differentiating background and fibre material.

3.3 Registering the set of images into a 3D image

Since we have to split our paper sample into a series of 2D digital images to be
able to image the internal parts, we need to reassemble these images into a 3D
image. We unavoidably will deform the paper sample during cutting, and these
geometrical distortions have to be attenuated even though they are small. There are
other distortions during imaging as well, but the geometrical distortion is the most
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prominent one. Non-linearities in the response of the sensor are not a problem for
us, since we will binarize the sample.

The registration process is divided into two parts. The first is to align and com-
bine theM overlapping sub-images (i.e., images such as in Figure 13) into one wide
image, see Figure 17.

Figure 17: Each triplet of images needs to be registered before mosaiced into a wide
image.

We do not know the exact amount of translation in the moving-step during dig-
itization, so an automatic matching technique is used. We selected the Hierarchical
Chamfer Matching (HCMA), see Borgefors (1988), since it is a fast and robust
method for image registration. Hierarchical means that the method sub-samples the
image to a hierarchy of resolution levels (Sonka et al., 1999) resembling a pyramid.
The advantage of this process is that the matching can start at a lower resolution and
continue further down to higher resolution levels until the original image is used for
the final matching. In each step a local surrounding ofp× p pixels are used for the
comparison, and as the resolution in higher levels are lower, we take large steps for
each local step. Ideally, this should result in both improved robustness and a much
faster method, compared to standard correlation applied directly to pairs of images.
In this case, correlation is measured as follows. Both images are transformed by a
Canny edge detector (Canny, 1986), and one of them further transformed using a
2D DT〈3,4〉. Translation within a fixed local surrounding and integrating the square
values in the edge-pixels that are covered by the image we match against, estimate
how good the match is. For best match, it is reasonable to optimize for maximum
number of overlapping edge voxels and the ones that do not overlap should be as
close as possible, i.e. have small DT values. To increase the robustness even further,
we use standard correlation in a small local surrounding of the translation(dx, dy)
that HCMA found. If HCMA was successful, we will see a local maxima in the cor-
relation at(0, 0) and lower correlation values around this local correlation maxima.
This registration is not so complex, since a subset of pixels is present in the adjacent
images. However, whatever your favourite matching method may be, the overlap
does vary a lot, so the method you choose should be robust enough to handle this.
The HCMA plus correlation works well, see Figure 18. When studying the result
image after transformation and the mosaicing, it is often impossible to see the joint
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between the sub-images, even without any grey-level interpolation in the transition
area. This registration process is completely automatic.

Figure 18: Example of registered and mosaiced wide image.

The second part is to assemble the set of wide images into a 3D image. Due
to the 5µm distance between consecutive images, they differ considerably. Thus, a
simple global pixel based comparison, since e.g., correlation based matching, will
not work. There exist more advanced versions of correlation based matching. We
tried the method in Ourselin et al. (2000), developed for rat brain cryo-sections. It
uses a hierarchical approach with a set of local correlation masks to estimate a de-
formation field. The local masks are relatively small, so even small rotations can
be captured by only translating the masks around a local neighbourhood. Then, for
the point matching for the centres of the matched blocks, M-estimators are used
since they are less sensitive to outliers, known to cause troubles for Least Squares
(LS) based methods (Björck, 1996). The difference between M-estimators and LS
methods is the minimization function. In LS, we usemin(

∑
r2
i ), i.e. we try to min-

imize the sum of the square residuals (errors). As LS assumes that all data points
are equally valid, a single outlier can result in a very inaccurate solution. In M-
estimators, we replace the square function byρ(ri), i.e. min(

∑
ρ(ri)) and use e.g.,

ρ(ri) = ||ri||2. By using a functionρ which does not square the residual, outliers
will not influence the calculations as much. We still need a way to solve this esti-
mation problem, and it is common to reformulate the equation above as a sequence
of weighted LS problems:min(

∑
w(rk−1

i )(rk
i )2). In doing so, we can essentially

use the same calculations as in LS, but have a much more outlier insensitive method.
The hierarchical idea is similar to HCMA, for the purpose of speed and robustness.
Although the initial tests seemed promising, the method sometimes diverges and
produces bad registrations. Since we had an alternative, based on landmarks, we
decided to use that instead. Robustness to outliers is essential in landmark based
registration. If good landmarks can be embedded into the sample, this will yield
both a faster and a more robust method than image based registration. If we have
the special knowledge of certain corresponding points, it is good to make use of this
information.

Landmark based and image based matching are rather different. In landmark
based matching, you select a set of points that you are confident can be tracked in the
images to be registered. No other pixels are used for the registration. A commonly
used idea is to limit the type of movements that can be corrected. By imposing
this restriction, we get a simpler well defined parameter estimation problem. Our
images have basically four types of movements/deformations: translation, rotation,
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scaling, and a small amount of shear (the last caused by slightly uneven cutting).
See Figure 19. An affine deformation model is ideal for this case. The parameters
for the affine transform are estimated and if the landmarks are well chosen and the
transform accurately models the deformations that occurred, the residuals should
be small. The parameters, together with the transformation formula selected, are
applied to all pixels, using, e.g., bilinear interpolation, since transformed pixels will
generally not be aligned to the rectangular grid. It is important to use robust meth-
ods, because if a single landmark is severely misplaced, it should not be allowed to
ruin the match.

SHEARTRANSLATION ROTATION SCALE

Figure 19: The four types of movements/deformations we need to undo, by regis-
tering the sub-images into the common co-ordinate system of the wide image.

The technique of image based matching does not utilize any special knowledge
of points to track, but instead tries to compare sub-images directly. Basically, each
sub-image is considered a landmark, but since these are scattered automatically over
the image, they are easier to obtain than landmarks. The disadvantage is that the dif-
ference between a good match and a random match can be small, resulting in many
false matches. However, if it works, there is no need for finding good landmarks,
which can be troublesome.

As landmarks, we manually selected a bounding box for each of the two rayon
threads, and a few thick-walled uncollapsed robust fibres that are found in both
images. Then the centres of gravity were used as landmark points. This pair-wise
matching can lead to a sheared volume, which would need to be corrected, but
since our volume “only” consists of 102 slices, we did not notice any severe shear
effect. It is important to ensure that the two rayon threads are straight, otherwise
the errors in the pair-wise matching could accumulate to produce a volume which
is not a parallelopiped. This was achieved by tiny clips at each end during curing
in the epoxy resin compound. Since these rayon threads were fragile, it was quite
tricky to apply enough force to hold them stretched without breaking them. We
only managed to add two. It would have been desirable to have more, since then we
would not have needed any additional fibres for the landmark matching.

The Least Squares (LS) method was accurate enough for our purposes. We
also tried weighted LS to be able to assign different initial levels of trust to each
landmark and then have an update based on each residual in an iterative manner.
Since the improvement was insignificant, the standard LS method was used. It is
always better to have data with less distortion, that enable simple methods, than
bad data requiring advanced methods to try to recover the initial shape. There are
several alternative ways to perform this registration, since slicing and reassembly is
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common in medical image analysis. Since we were satisfied about the performance
of our rayon thread and LS approach, there was little reason to try anything else.

3.4 Filtering and pre-processing

By analyzing the histograms from the captured 2D images, it is possible to identify
two approximately Gaussian distributions that are mixed but still quite separable,
see Figure 20. These correspond to signals from the resin filled areas outside the
paper and inside the paper, fibre lumens, void regions, and the fibre material. The
images have an uneven background, which was attenuated by using a new DT-based
shading correction (see Paper II). Some of the images have a shading problem at the
left border (caused by the SEM camera). It was necessary to remove this artifact too,
as described in Paper II. The definite advantage of attenuating artefacts as much as
possible before attempting to binarize the image, is that it is sometimes possible to
use a basic segmentation method after this pre-processing. Without the correction,
it would not be possible to get an accurate segmentation by a global threshold. Bi-
narization in itself can be a very difficult step, but since this partitioning is often
crucial for all of the following steps, it is wise to spend some effort on it. It is possi-
ble to not use a definite binarization partitioning into background/object, but instead
to use a fuzzy approach (Udupa and Samarasekera, 1996; Borgefors and Svensson,
2002) of assigning a 0–100% degree of belongingness to the object and background
for each voxel. This may aid in following individual fibre segmentation steps, but
since we believe this to be part of the fine-tuning and not critical for the overall
performance, we postpone it to future studies.
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Figure 20: Example of histogram of a 2D grey-level image from the data set.

Noise in SEM images is mainly influenced by the acquisition time. Longer
acquisition time mean that more electrons reach the detector in the SEM device and
compared to the random electron noise count, we can get a high signal-to-noise ratio
(SNR). We want to minimize the time of digitization, and we do this by reducing the
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time to about 35 seconds for each capture. This produces images with a reasonable
SNR. A classical image analysis problem is to remove as much noise as possible,
while trying not to blur the edges in the image, which are conflicting goals. We
use a median filter and an anisotropic filter based on a 2D DT, described in Paper
II. This step does not seem crucial. It is possible to select your favourite method
for image improvements, such as to attenuate Salt- and Pepper noise. Still, it is
important to keep as much information as possible to facilitate segmentation, which
is the complex part of the problem. We neither want crucial details lost due to too
much smoothing, nor any scattered pixels left due to noise.

3.5 Resolution enhancements

To partly compensate for the lower resolution along one axis, we tried a linear shape-
based interpolation method (Udupa and Raya, 1990) on a small piece of one fibre
(see Figure 21). Simple grey-level interpolation is not enough to compensate for the
relatively large displacement of fibres that exist. Instead shape-based interpolation
(also known as “Morphing”), which is much more complex, is needed. Basically,
we want to track the fibre path in three spatial dimensions, and predict the path
where we have no samples. The method is special, since it can interpolate without
exact segmentation of individual fibres, within reasonable levels of fibre displace-
ments and deformations in shape. Still, for more complicated parts, the method has
problems and needs guidance of what to interpolate. As we have not yet segmented
the fibres, it is hard to provide this information. The anisotropic data may look like
a set of stacked slices when rendered, but it is sometimes possible to improve the
visual appearance considerably, by using shape based interpolation, see Figure 21.
However, interpolating the entire 230 Mbyte dataset into isotropic resolution (same
resolution along all three co-ordinate axes) would result in 1.6 Gbyte of data. Apart
from the increase in storage, you have an insecurity during the interpolation step,
that you actually may join parts that should have been left separate. Essentially,
there is no ideal substitute for the missing information, but in some cases shape-
based interpolation can be the solution to intelligent interpolation, when grey-level
interpolation is not enough, which it seldom is.

3.6 Where is the surface?

Maybe surprisingly, one troublesome paper measure is to define where the upper
and lower paper surfaces are located. Since the network of fibres will create a web
of voids, the transition is gradual, from “definitely inside” the paper to “definitely
outside”. The problem with finding the paper surface is that paper can have rather
large holes and porous regions and tunnels into the inner parts, a robust paper sur-
face detection method should not go into these pores. Instead it should capture the
general trend, but at the same time not smooth too much since that would decrease
the level of surface detail.

To actually calculate these two surfaces in three spatial dimensions for a 230 M
byte dataset can be cumbersome, but we use a very efficient 3D rolling ball algo-
rithm (Frank, 2000), that only requires two 3D DTs and a simple global threshold
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Figure 21: By using shape-based interpolation, the aliasing caused by severe under-
sampling can be attenuated. The added virtual slices “fill in” the missing informa-
tion, by assuming a smooth transition between the adjacent sampled slices.

to calculate the surface that the centre of a virtual rolling ball traces. The idea is to
roll a virtual ball with radiusR touching the surface, and the regions where the ball
cannot reach are considered belonging to the paper. This approach is purely discrete
and requires only four scans with a small local DT mask through the volume, thus
relatively cheap considering what it accomplishes. It is a kind of smoothing of the
surface, where too little smoothing will let the background “dig” too deep into the
paper — which is not consistent with common notions of surface, and where too
much smoothing will decrease the level of detail of the surface. Finding a good
compromise is necessary.

The steps needed for the 3D rolling ball algorithm are outlined below, assuming
a ball of radiusR.

1. Init the image with value 0 for fibre voxels, and 255 (max of unsigned byte
data type) for non-fibre voxels

2. Compute the DT〈1,1,7〉 (propagates distance values away from all fibre vox-
els, smoothed but delocalized)

3. Mark with 0 if DTimage(v)>R and 255 if DTimage(v)≤R for each voxelv

4. Compute the 3D DT (propagates towards fibre voxels to compensate for dis-
placement)

5. Flood fill from upper and lower image boundary, and stop at voxels with
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DTimage(v)>R. This will ensure that large voids inside the paper are not
classified as “outside”.

Note: In principle, there is no restriction on the dimensionality of this smoothing
operation. Since DTs can be calculated for data sets with higher dimensions than
three, this method could be used to extract regions in N:th dimensional spaces. We
would have to investigate the practical use of this.

3.7 3D pore distribution

Using a 3D DT approach, we tried to roughly label each individual pore region
inside the paper, i.e., regions with no material. This would enable measurements
such as pore size histogram (global size distribution), the pore size as a function
of distance from the surface, etc. Note that we useporeandvoid interchangeably.
Since pores occupy roughly 50% of the volume of paper and can be considered
as the “inverse fibre network”, they influence paper properties as much as the fibres
do. Similar to the individual fibre segmentation problem, pores have “wires” of fibre
material and are connected to neighbouring pores. By using the smoothing approach
from the 3D rolling ball method (see Section 3.6), we could simplify the problem
by merging the thinnest paths and then use a 3D watershed (see Beucher (1982)
for initial idea and Vincent and Soille (1991) for an efficient algorithm computing
watersheds) on the DT values of the smoothed region. This will find local distance
maxima and grow from these to create separate void regions. If two adjacent void
regions have more thanN voxels in common, these are joined into one void region
(see Figure 22). A thresholdR = 7 was determined as a compromise, to not smooth
too much, to keep as many small pores as possible, and still not occupy labels for
the smallest pore regions. For a small part of the labelled volume, see Figure 22.

Figure 22: Pore volume rendering.

Even with the smoothing step, this pore segmentation seems as difficult as find-
ing individual fibres. By visual inspection we realized that our watershed approach
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was not able to differentiate the pore-clusters into individual pore regions with good
precision. As an alternative we instead describe the pore size properties of a paper
sample as a histogram of the values of the DT 3D image, see Figure 23. This is not
a substitute, as we will loose the information of where the pores are distributed. It
can be very difficult, even manually, to divide the pore space into individual pores.
See Paper IX for details.
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Figure 23: Histogram of DT values for the volume.

3.8 Segmenting individual fibres

As stated previously, our SEM setup combined with filtering will enable the sim-
plest segmentation technique, i.e., a global threshold, to perform well. Transforming
the grey-level image into a binarized image with only two classes, i.e., fibre voxel
and void voxel, is therefore straight-forward. The next level of segmentation is
nothing but trivial, segmenting individual fibres, i.e., partitioning the tightly clus-
tered fibre material into separate fibres. We have tested three different approaches,
which will be explained in greater detail in Sections 3.8.1, 3.8.2, and 3.8.3. All
three approaches need user interaction, since a fully automatic approach with good
robustness seems difficult to achieve.

Finding individual fibres is difficult, as each fibre in the network often have
many contact areas with adjacent fibres and filler material. Therefore, using a sim-
ple 3D labelling algorithm will not identify the individual fibres. The thin long
fibre structures make a 3D watershed algorithm not applicable. Instead, we need a
method that is able to track the fibre path. For an isotropic 3D data set with well
separated fibres that have no pores in the fibre wall, it would be a trivial task to find
the winding lumen path by using any 3D fill method. This is not our case. We have
tried both 2D and 3D based tracking, i.e., finding fibre contours in each slice image
or analyzing the 3D image directly.

Similar segmentation problems exist in medical image analysis, e.g. separating
arteries from veins, or segmenting the vascular tree in CT images. The method in
Section 3.8.3, utilizes a method originally developed for medical images, but with
some modification to improve the performance for fibre segmentation purposes.
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As noted above, the resolution of the images is an important factor. The more
anisotropic the data is, the less “3D-ish” it is. Instead, it tends to be a sequence of
uncorrelated slices. However, for our data, even if the difference in resolution is a
factor seven, we definitely have good correlation between slices and thus a chance
to estimate corresponding points in adjacent slices.

3.8.1 Segmentation based on 2D images

The idea is to let the user mark each fibre lumen in the cross-sectional images with
a mouse click. These markers will be used to automatically segment the lumen and
find the surrounding fibre wall. A Graphical User Interface (GUI) was created using
guidein MATLAB

TM
. The more time consuming parts, “bottlenecks” of computa-

tion, are encoded in MEX-files, which is C-code with an interface that MATLAB
can pass parameters through. See Figure 24 and 25 for screen dumps of the GUIs.

Figure 24: Interface for segmenting fibres on a cross-section.

Several 2D based approaches were used in this step. All are based on analysis
of each 2D slice, one at a time, where we search for the cross-sections of the fibres.
A major drawback with any sequential 2D analysis of 3D data is that we will have
large problems if the fibre path tends to be parallel to the slicing direction, since
we then cannot obtain any cross-sections. Since the papermaking process roughly
align many of the fibres along the Machine Direction (MD), this approach is still
useful for all these fibres. The fibres that are near parallel to the slicing direction
will be impossible to handle. An improvement would be to combine three mutually
perpendicular 2D scans of labelled fibres to obtain more of the fibre material, but
a more direct 3D approach would be more robust. The large vertical forces on the
paper during the press section flatten many of the fibres. Only fibres with rigid, thick
walls remain basically circular. In cross-sectional images we only see a small part of
the sometimes complex surface of a 3D fibre object. In combination with the natural
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Figure 25: Interface for linking fibres from adjacent cross-sections.

shape variations which exist in many biological materials, a fibre cross-section can
have quite different shapes (see Figure 26).

All our initial approaches of identifying fibres are based on finding the wall
surrounding the lumen. When we continued to test this on more and more fibres,
we realized that it is necessary to have a small set of different approaches. An initial
approach, is to let the user decide which of methods 1–5 to be used for each fibre.
This adds to the number of mouse clicks, unfortunately.

1. Well behaved fibres have no cracks in the wall, so a simple 2D fill will mark
the lumen.

2. Tiny cracks can be compensated by a 2D DT smoothing (DT + threshold +
DT + threshold), the same smoothing technique used to find the paper surface,
but here we only need the 2D version.

3. For larger holes in the fibre walls, we use 2D snakes based on the Gradient
Vector Field (GVF) extension (Xu and Prince, 1997). Since GVF is just one
example of a force field that improves the convergence of a snake, we adopted
this two step approach: (1) expanding forces (as in a snake-balloon-mode), (2)
2D DT gradient field, that pulls the snake towards the inner lumen wall edge.
Fibre initialization was made by the user, marking one centre spot, then a set
of rays are shot in 5◦ intervals to find the distance to the fibre wall. Due to
cracks, some rays will be too long, but a median filtering of the 1D radius data
will capture the main axis of orientation and we then fit a simple ellipse inside
the lumen detected. Fibres with approximately ellipsoidal shape will have a
good start position, but narrow eight-figure-shaped and irregular shapes with
sharp corners are difficult for the snake to segment accurately.
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Figure 26: Examples of fibre cross-sections.

4. Oriented structure element filtering. Using thin long structure elements we
could “heal” cracks in the wall, enabling the simplest fill method to perform
well. By using the ellipse that was fitted to the lumen, the idea was to create a
vector field that has the same orientation as the tangent vector of the ellipse at
the co-ordinates on the ellipse and with a smooth transition in-between for all
other co-ordinates not on the ellipse path. Then, for each pixel the structure
element that has most similar orientation to the local vector field was used for
smoothing. By this technique, we could use larger oriented structure elements
without smoothing so much that adjacent fibre walls mould together.

5. A few percent of the fibres were difficult for the snake to “lock-on”. For these
fibres we had a “last resort” button allowing manual editing.

Note that all editing is just to guide the lumen fill method. After the fill operation
is complete, the original voxels are restored. We noted that the fibres which have
high eccentricity are complicated for a snake to segment well. However, the snake
tests were a nice experience. They do have stability issues, but with proper setup and
parameter selection, they have a way of locking on to the “target”. An interesting
challenge would be to try using 3D snakes directly to find the lumen. See, e.g.,
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Chapter 5 of Hamarneh (2001), where Spatio-Temporal (images with two spatial
dimensions and time or three spatial dimensions) snakes have been developed. Even
if they note that currently, an expert has to manually create a good initial shape,
this kind of computer supported segmentation seems like a reasonable compromise
between fully automatic, but less robust, and entirely manual, which often provides
the highest possible segmentation quality, but unfortunately very time consuming.

Another type of 2D based fully automatic segmentation is described in Paper
IV is based on DT histogram and some basic features for finding lumen candidates.
An example of a successful result can be found in Figure 27. The variation in
segmentation quality varies quite a bit, making it less ideal for use on the entire 3D
image.

Figure 27: Example of fibre segmentation result.

The oriented structure element approach gave mixed results. For some fibres
they work perfectly, removing the small gaps in the fibre wall, but for others the
shape was altered too much. Both this and the snake approaches have a set of
parameters that need individual settings foreachfibre. The obvious drawback of
this approach was the extremely tedious manual editing, resulting in sore eyes and
headache. There always seemed to be some 2D piece of each fibre missing, resulting
in problems for the 3D reconstruction, since we needed a way to take care of the
missing parts. In conclusion, all five methods are not feasible for such a large data
set as we have. After working with the different 2D techniques, we were even more
convinced that anything else than true 3D methods are not up to this task. If the 2D
approach would have worked well, it had been possible to track fibres using a less
powerful computer than 3D based methods require.

3.8.2 3D vector path estimation based tracking

The “debacle” above was forgotten and it was time for new and improved ideas, in
three spatial dimensions of course. The idea is to still take advantage of an expert
operator to identify fibre lumens in a cross-section in the firstz-slice, and then the
method should try to track this fibre lumen through the volume in a fully automatic
way. Remember that we define thez-axis to be along the direction of microtome
slicing, not perpendicular to the surface, which is common.

Our implementation does the following: 3D DT on the background voxels. The
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wall voxelsv have DTimage(v) = 0 and the lumen and background voxels will have
increasing values the further away from any wall voxel. This DTimage space is now
used to guide the “probe” we send into the lumen of each fibre. The initial direction
estimation is perpendicular to the cross-section,vi = [0, 0, 1] and this is updated
along the path. In each step we allow only steps inZ3 inside the local 3×3×3
neighbourhood and also less than45◦ from the current estimated direction vectorvi.
This enables a fast table look-up in the local neighbourhood of 26 voxels, to obtain a
list of the voxels which have the highest DTimage value (may be more than one) and
select one among these. We want to stay away from the walls which seem sound, to
“keep in the middle” of the lumen as we trace it. Many of the fibres are elliptically
shaped, hence having lumens with high eccentricity. This cause problems, since the
DT only calculates the distance to the closest wall voxel in each position. We get
good “steering” along the minor ellipse direction, but rather loose steering along the
major ellipse direction, producing a wiggly path inside the lumen. See Figure 28. To
improve the performance, we added the constraint that we may not deviate further
thanM voxel units away from a line segment, fitted to theN last voxels of the
path. During the experiments these were manually chosen, as e.g.,M = 5 and
N = 5. Our problem was that the direction estimates were not consistently accurate.
Our restriction was then of little use and the path often diverged into the paper
void through a wall crack or one of the artificial holes caused by the low sampling
along thez-axis. It is however, a true 3D method, which could handle fibres with
any path through three spatial dimensions, as long as we do not loose the tracking,
which happened rather often. If an improvement of the local fibre path estimation is
possible, maybe this idea could be developed into something really useful.

3.8.3 Ordered region growing with a fibre touch

Ordered Region Growing (ORG) has been used with great success on medical im-
ages to segment veins and arteries (Adams and Bischof, 1994; Yim et al., 2000).
We have tried this method with the only modification that the steering functionf is
adjusted to suit our problem domain. For the rest, the method was unchanged. It
was encouraging, to find an existing method that was well suited for our problem!
ORG was designed to segment tree-like structures as e.g., blood vessels. An expert
operator manually seeds one start-voxel and one or several end-voxels, for a specific
part of a vessel tree. Then ORG finds the path in-between by incrementally adding
voxels that are optimal, based on the steering functionf . Since paper fibres do not
branch, we only need a single path, which is a special case of a tree, so it is not a
problem.

The major difference to our method based on estimating local orientation to
track fibres, is that ORG can recover if it gets lost, since it continuously checks
which voxel to add by evaluatingf on each boundary voxel of the current tree.
The speed and accuracy of the method depends only on one thing: selecting a good
functionf , which is used to decide which voxel in the boundary set we will use in
each iteration. A goodf will grow the path along the desired fibre lumen, and not
allow the tree to deviate into other regions.

The ORG finds a path through the fibre lumen, but cannot segment either the
entire lumen, or the fibre wall. Therefore we need an additional method to handle
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that. In Paper III we have developed a technique to segment 2D fibre walls, which
works reasonably well. We extended that idea to three spatial dimensions, to get full
fibre wall segmentation. The details follow after the description of how the ORG
method is implemented.

Finding a path through the lumen of a fibre

To initialize the computations for each fibre, ORG requires the user to manually
mark two voxels in the volume, the preferred start- and end-voxels that must be
inside the lumen of the fibre. The conclusion in Paper III that lumen tracking is
easier and more robust than wall tracking, still holds for images with three spatial
dimensions. It is not straight-forward to implement robust automatic seeding, in-
stead we have concentrated our efforts to adapt ORG to our fibre tracking purposes.
Without having tested the following somewhat vague idea, a kind of seeding with
a skeleton structure of the void regions may provide an opportunity for automatic
seeding. However, to be robust, this will need to be fine-tuned for this specific
seeding problem.

Ideally, we only want the optimal path from start node to end node, but depend-
ing on how well it is possible to design the steering functionf , which of course
depends on how difficult the data set is, we obtain a tree structure with more or less
branches. Without a well designedf , the method is “lost in the void space”. With
a reasonablef , the ORG can create a small tree structure and as soon as the end
node is included in the tree it stops. Each node has only one parent node, so we can
back-track from the end node along a unique path to the start node.

Medical images often have vessel trees with high grey-levels in the middle and
decreasing towards the walls of the vessels. This is achieved by injecting a contrast
agent into the patient before imaging. In this case, the choice of a steering function
f(v) = greylevel(v), can be a good initial approach. Our data are nearly binary to
start with, so grey-levels are not optimal forf . Instead we use the following: By a
DT we get the distance from the closest non-void voxel for all void voxels. We want
the path to stay away from the walls, favouring a path centred in the fibre lumen.
Roughly elliptical cross-sections will have a set of local DTimage maxima inside the
elongated lumen (see Figure 28), so the path may oscillate during tracking. This is
not a severe problem, since we can attenuate these oscillations in a post-processing
step, by using approximating splines. Another crucial modification tof was that
we want to favour local steps toward the end-voxel. Combining the need to favour
voxels centred within the lumen and steps towards the end-voxel, we found the
formulation off as in (1) useful:

f(v) = DT (v) +
1

||vend − vstart||
(v − vstart)(vend − vstart) (1)

Note: The parameters of the Chamfer DT will affect the selection. For example,
using larger chamfer weights will favour steps centred inside the lumen, compared
to steps towards the end. This is not a problem, since a simple scaling of the DT
values will compensate for the change, but is worth keep in mind.

Improvements could be to allow more difficult cases by marking asequenceof
voxels, then run ORG iteratively on each subsequent pair. This stricter guidance
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Figure 28: Illustration of how the ORG path tracks in a 2D cross-section that is
approximately perpendicular to the fibre path in three spatial dimensions. (left)
Sample fibre, (right) DTimage of fibre, where higher DTimage values are darker and
lower DTimage value brighter. The DTimage maxima are located along a line in the
right image, and a corresponding grey line in the left image show where the ORG
path is most probable to scan.

will decrease the risk of ORG loosing track and getting lost in the void between
fibres, but this mode requires more user interaction. Some method details follows.
During the calculations, three setsR,G,B - keep track of the progress, whereR is
the region of all voxels we have visited,G is the growth, i.e. voxels added in the
current iteration, andB contains the boundary voxels, i.e., the subset of voxels inR
that have a at least one neighbour voxel which is not inR.

· Setup: Insert start node inR andB, then in each iteration:

· Select a new seed nodesn, from B, such thatsn have the highestf(sn) of
all voxels inB. Using a poor decision functionf , has the effect of increasing
the size of especiallyR, andB, since we step in many directions that are not
optimal paths towards the end-voxel.

· Each neighbour voxel ofsn will have sn as its parent. This simple update,
have an important property that throughout the entire regionR, every voxel
will have a unique parent. When tracing backwards from a voxel inR, there
will be only one path to the start node.

· Update the three sets:

Gn = Neighbours(sn)\sn

Rn+1 = Rn ∪Gn

Bn+1 = (Bn ∪Gn)\sn

The iteration continues until the end-voxel is reached. After that we trace back,
following the parent pointer in each node, and save this path in a list of(x, y, z)
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co-ordinates. To efficiently find the voxel inB with highestf(sn), we keep the set
B sorted according tof . Since the set is internally stored as a linked list, we can
simply retrieve the first element in each iteration, a quick operation. To minimize
the space complexity, we encode the parent as a lookup into a 26 item table since
we always have 26 neighbours and we can say, e.g., the local step[−1,−1,−1] is
encoded as 1, thus only five bits are needed (four bits can only encode24 = 16
combinations, which is too few). Each(x, y, z) position is stored as the memory-
offset. We use offset= x + xsize· (y + ysize· z). Using four bytes allow us to
handle volumes with up to 4 G voxels.

Lumen segmentation from the ORG path

From the ORG, we now have a somewhat wiggly path inside the fibre lumen. The
idea is to use this as a base for finding all lumen voxels. For this step we use
the 3D SeparaSeed method (Tizon and Smedby, 2002). A probably more known
method that performs a similar kind of segmentation is theWatershedbased mathod
(Beucher, 1982; Vincent and Soille, 1991). Contrary to Watershed, in SeparaSeed
the pixels do not need to be sorted and only a small local mask can be used to
iteratively update the connectivity. Thus, it is often much faster than Watershed and
well suited for our purposes. Each labelled voxel has a connectivity value that is a
measure of how “close” it is to the seed region with the same label. Since we use
two classes of seed-points, void and lumen, we will classify all background voxels
according to if they belong to lumen or background. All wall voxels are considered
a restricted area, so no paths can pass through these. As connectivity between two
voxels, we use a number based on a DT from the non-background (fibre) regions.
Cracks and holes in the fibre wall that are smaller than the diameter of the lumen
will not let the void region flow into the lumen, as the connectivity is larger to the
lumen seed voxels. See Figure 29 for a synthetic test case with a 2D fibre with some
holes in the fibre wall has been labelled using 2D SeparaSeed. It is easier to show
a 2D test case to view the basic principle, and the 3D SeparaSeed works in exactly
the same way. That the extension from 2D to 3D is straightforward for SeparaSeed,
is an additional good property.

Connectivity between voxelsA andB is defined as: among all possible paths
from A to B, the path with the highest strength is used. Strength is defined as the
lowest DTimage value in that path. With SeparaSeed, the optimization problem can
be efficiently handled using chamfering, which is not immediately obvious. To be
able to measure the connectivity to void voxels, we need to find a set of them to
use as seed voxels and this is done by the following procedure: a DT from the ORG
path is thresholded between two radius parameters,R1 andR2. The non-wall voxels
inside this region are considered to be void voxels. This is based on the assumption
that fibres are approximately circular and with diameter less than2R2. Since we
use the ORG path, this shell of surrounding voxels will follow the fibre, and even if
the path is a bit wiggly, the DT will have a smoothing effect, so the shell is rather
smooth. Now we have the seed regions for the void and the lumen, so SeparaSeed
can find all lumen voxels. Problematic cases are fibres with thin lumen, since then
the connectivity measure is not suitable.
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Figure 29: An example of 2D connectivity labelling using SeparaSeed. (left) origi-
nal fibre with ORG path in lumen, (middle) the surrounding DTimage-shell created
from the ORG path, (right) result of SeparaSeed – lumen is now separated from the
background.

Wall segmentation from the lumen region

From the lumen voxel region, we need to mark the surrounding wall voxels which
belong to the current fibre. Any adjacent fibre wall voxels should be left out. Here
we extend the idea, presented in Paper III, of using a histogram based approach
based on a DT from the lumen region. A histogram for the ratio between fibre wall
voxels and the total amount of voxels in each DTimage layer is calculated. Since
the total number of voxels are different for each DTimage layer, it is not a good
idea to only count the number of wall voxels in each DTimage layer. The DTimage

layers for the DT〈3,4,5〉 are defined (Borgefors, 1994) as {(0), (3), (4,5,6), (7,8,9),
(10,11,12), . . . }, i.e. shells around the lumen region. The assumption is that the
fibre wall is approximately of constant thickness. If so, this histogram will have a
step-edge shape, see Figure 30, and the average wall-thickness can be estimated. To
allow for some local thickness variation, we have a parameterscale, that allows to
fill up to scale× wall thicknessfrom the lumen. We now want to use our calculated
local wall thickness. We use a restricted reverse labelled DT, where only fibre-
material voxels will be used in the propagation of labels. It is initialized by setting
the lumen voxels toscale× wall thickness. The reverse DT will then fill the fibre
walls, by locally decreasing the initial DTimage values for all of the voxels, and at
the same time, set the voxel label.

We thus use a three-step method to find a fibre: (a) find a set of lumen voxels
that trace the fibre through 3D space; (b) use the path in (a) as seed voxels to find
the entire lumen; (c) from the lumen found in (b), we can find the surrounding wall
voxels. The result of the method is a voxel volume where for eachfibre(i) we found,
two sets of voxels are associated: the set of lumen voxels with label2i, and the set
of wall voxels with label2i+1. This labelled volume is then used as the base for
the successive measurements. By this approach we could find 25 of the cylinder
shaped fibres in the dataset. This is about 10–20% of the total amount of fibres
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Figure 30: A DTimage layer histogram based on a 3D image, displaying the percent-
age of wall voxels in each distance layer surrounding the set of segmented lumen
voxels. See the fibre in Fig. 31.

present. Some of the remaining fibres are very short, these we have not segmented,
and the other fibres have more complicated shape, and are thus difficult to segment
accurately. An example of a segmented fibre, can be found in Figure 31, and in
Figure 32 six more are displayed.

3.9 Measurements

After the digitization of a paper sample into a digital model, the actual use of the
model can start. For ease of computation, we resampled to cubic voxels for the
measurements. We have also developed two representations to aid in this measuring
step, since they enable more efficient measurements than if we use the fibre model
of voxels directly.

Our methods can provide alternative methods of measuring paper and fibre prop-
erties, with some measures that are possible with other techniques, and some that
are unique to our approach. There are most certainly other measurements possible
than the ones we provide here, but as a sample collection, they provide an indica-
tion of what can be measured. Especially the extreme level of detail for each fibre
is unique. Even considering that all measurements will be biased by various er-
rors from the filtering, registration, and segmentation, there remains a good deal of
information that should be useful.

We define three levels of measurements, since each have different requirements
and produce estimates on different scales. They arepaper level, fibre network level,
andfibre level. On thepaper level, we have three measures: surface estimation,
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Figure 31: Example of labelled 3D fibre, found by the methods in Section 3.8.3.
This fibre has a rather thick wall, but still the fibre bends and twists a bit along its
path.

paper density, and pore size analysis. Neither of these requires individually labelled
fibres, only a binarized digital 3D image of a paper sample. We have 0.7µm res-
olution in thexy-plane, a detailed study of the surface is possible, even if some
smoothing during the 3D rolling ball step will occur. Density is possible to measure
as soon as the surface is determined, since we already know which voxels are void
and which are fibre material. The 3D void analysis enables an estimation of the void
regions inside the paper sample, which we use to make histograms of distributions
along thex, y, andz axis, respectively.

At the fibre network level, we have implemented code to count the number of
contact points between fibres, measure free fibre length, and contact area. This gives
some information about how the fibres are interconnected.

Finally, we have thefibre level. Most of our measurements have focused on this
level, since the individual fibres are our main concern. It is possible to estimate
at present: length, wall thickness, curvature, twist, torsional rigidity, aspect ratio,
degree of collapse, lumen volume, fibre wall volume, and bending resistance. With
this set of measurements, we can capture some basic fibre properties at a very high
level of detail. The surface representation of the fibre wall is ideally suited for, e.g.,
wall thickness variation analysis. Since it also captures the shape of the fibre wall,
as well as the local thickness, several other measures could benefit from this. The
curve representation of the fibre lumen is a one-dimensional curve through 3D space
centred within the fibre lumen. Thus it is great for fibre length measurements and
for keeping track of where through 3D space the fibre path is traversing. Combining

48



Figure 32: Example of labelled 3D fibres. Both the lumen and wall are identified,
but here we only display the wall voxels.

these two representations with the completely labelled 3D image should provide
further possibilities of measurements on both the fibre and network level. The size
of our sample is far too small to analyze larger level effects as e.g., flocculation. We
need either to digitize a larger piece of paper or restrict the analysis to only small
sampled regions. As there are other techniques better adapted to the scale of large
level effects, we feel our approach is not useful for that kind of measurements. See
Hansson and Johansson (1999) for an image analysis based approach to measure
surface topography of paper samples of size 5×5mm2, which seems extendable to
larger samples. For details about our measurements, see Papers VI, VII and IX.

3.10 Rendering 3D images

An important aspect when analyzing data is how we select to view the results of a
computation. For one-dimensional scalar numbers, a colour diagram can be much
more useful than a simple dump of the numbers to a table. If the result is a two-
dimensional array of scalar numbers, we can use a 2D diagram with bars, or map
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the 2D array directly to the screen as an image, e.g., using blue for low valued
numbers and red for high valued numbers, resembling a temperature scale. This is
intuitive and easy to understand, which makes the interpretation of the results more
straight-forward. When the results of calculations has higher dimension than two,
the presentation is more difficult. The basic restriction is that our visual system is
two-dimensional. If we have three spatial dimensions or even higher dimensional
data, we need to project the data onto a 2D display. Hence, we will loose some in-
formation, and it is necessary to decide what can be left out. See Computer Graphics
(2002), for a list of many research groups that are working with computer graphics.

For image analysis of 3D data, rendering is an essential part, since we need to
“look at” our results, see Figure 33. A simple alternative can be to browse through
the volume, looking at one 2D slice at a time. However, doing so much of the overall
3D information is lost. Computer graphics is a huge and active research area, even
only looking at the part that deals with scientific visualization, i.e. presenting results
as visual information. Even if it is a bit overwhelming, it is also great fun. We have
taken the opportunity to see how computer graphics can aid us in visualizing 3D
fibre images.

Figure 33: An interior region of the digital voxel model of the paper sample, size
500×500×102 voxels.

The first classification of rendering methods is probably into volume rendering
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or surface rendering. If your objects are opaque and you do not care about their
interior, it is often possible to have a compact representation by only storing the
surface elements. For surface rendering, you may choose between voxels or patches
of, e.g., triangles. Rendering 3D volumes often involves moving huge amounts of
data between a hard disc and the RAM. This severely limits the performance of
the rendering, so compression techniques and efficient data structures are important
topics. Even simple compression techniques, e.g., Run Length Encoding (RLE),
can make a big difference. There will always be volumes that cannot be loaded
directly into RAM. That is why many develop techniques for what is known as
“out of core rendering” to enable rendering of volumes that fit on your hard disc
but not in your RAM. Multiprocessor systems are ideally suited for the rendering
task, albeit algorithmic design becomes even harder. An indication of how large
models researchers are interested in can be found at the web site for the “Visible
Human” project at NLM (2002), where 15 Gbyte of cross-sectional images have
been assembled into a volume model. Another impressive site to look at is “The
Digital Michelangelo Project” (Levoy, 2002) where the David statue in Florence
was digitized into a stunningly large set of 2,000,000,000 surface polygons! Without
the continuing development that improves current techniques, these data sets would
not be possible to visualize.

Some of the rendering methods described below need triangular patches as in-
put. We use the Marching Cubes (MC) method to create a triangulated surface for
our voxel data (Lorensen and Cline, 1987; Wyvill et al., 1986). There are other al-
ternatives (see, e.g., the Tetra-Cube method in Carneiro et al. (1996)), which needs
to be combined with MC since it alone creates even more triangular patches. There
are techniques to post-process the triangular mesh, to reduce the huge number of
triangles (triangle decimation) without changing the geometry too much. We have
not tried such techniques. Another important distinction of methods is the relative
size of the voxels compared to screen pixels. As the voxel models are getting larger,
it seems pointless to run MC and get up to four triangles per voxel, when the voxel
size projected on to the screen is smaller than a single pixel. Because of this, the
idea of “splatting” was invented, treating each voxel as a point which is splatted on
to the screen with a certain 2D foot print (Mueller and Yagel, 1996). The trick is to
select a foot-print that does a small amount of smoothing and simultaneously avoid
creating artifical holes in the rendering of opaque objects.

Below is a list of rendering methods and storage schemes that we have imple-
mented code for. POV-Ray and QSplat needs converters: from voxel to POV-Ray
format, and voxel to PLY format (QSplat supplied a converter from the PLY poly-
gon format to the QS bounding spheres format). The ShearWarp method is imple-
mented from scratch using C++/OpenGL, although somewhat annoyingly, there are
some “bugs” left to kill until it becomes useful. Code for converting between the
shell format and 3D rectangular grid volumes has been implemented, although the
final rendering of shell voxels is not finished. Finally, thanks to a demo-version of
VolView we can actually present some good-looking renderings of our paper vol-
ume and fibres ...

POV-Ray
TM

(Persistence of Vision Ray Tracer)A freeware ray tracer (POV, 2002)
that many use for creating computer art, seewww.irtc.orgfor some impressive ren-
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derings. It is not ideal for visualizing large volumes, since both the ASCII format
of the POV-Ray files and the computationally demanding rendering approach will
take a lot of time to create a single image. Ray tracing is definitely aimed at non-
interactive rendering, that is, you start a rendering, go to sleep, and in the morning
your rendering is finished. Nonetheless, it is a fun program to experiment with.
The small fibre in Figure 21, was created by using shape-based interpolation and
POV-Ray. The volume was approximately 100,000 voxel large, but the POV-Ray
file created was 16 Mbyte!

Shear Warp A clever way of performing volume rendering without any specialized
hardware. Even if it is now commonplace to have highly accelerated 3D graphics
card in a standard PC, these are optimized to render large amounts of texturized
triangles, not fast rendering of voxels. This would most certainly change if, e.g.
Quake IV would require voxel rendering. The basic idea of shear warp is to factor
the projection from three spatial dimensions to two spatial dimensions into two dif-
ferent steps, a simple shear that is optimal considering how the data is stored for a
volume, and the warping that can be done by OpenGL hardware, together forming
a very fast method. Both orthographic and perspective mode is possible, although
perspective mode takes more time, as then each 2D slice need to be rescaled in the
shear step. Shear Warp has even been implemented in hardware to provide real-time
volume rendering of 30 frames per second (fps) on a standard PC, for volumes up
to size 512×512×512 voxels. See AVL (2002) for the graphics card and Lacroute
and Levoy (1994) for details about Shear Warp. Our implementation of Shear Warp
is in a state of massive bug-removal at the moment, but this method is definitely our
favourite approach to voxel rendering. Especially for volumes where the surface-to-
volume voxel ratio is very high.

QSplat This technique of Rusinkiewicz and Levoy (2000) is a variation of “splat-
ting” where each voxel centre is shot at the screen and “splats” into a small foot-
print. This ensures that we have no holes in the rendered image and also enables
an efficient traversal of the data. QSplat improves this further by adding a clever
“Bounding Spheres” data type, that is a kind of hierarchical structure of different
resolutions that enables a successively improved rendering, while maintaining in-
teractivity. Note that splatting may produce extremely bad images when zooming
close into the model, since the method consider a voxel as a single flat “blob”,
not as a well defined 3D object. A solid implementation can be downloaded from
Rusinkiewicz and Levoy (2000). It is fast, multi-threaded (the GUI can handle
user interaction independently of background calculations) and they have a few QS-
plat models to download and test the renderer on. QSplat is not limited to surface
patches, but in the downloadable program they use a triangular input using the PLY
polygon file format, since this simplifies the estimation of normals. To be able to
use this software for our fibre volume, we wrote a small conversion utility.

Shell data typesAs many 3D voxel objects have rather opaque surface voxels, it
makes sense to only store these, and not all the internal voxels as well. Even for
semi-transparent objects with a non-binary opacity function, the innermost parts
may be invisible or contribute very little to the rendered image, thus unnecessary to
store. A problem with abandoning the 3D rectangular grid storage scheme is that
we need to store the(x, y, z) co-ordinates explicitly for each voxel. Without an
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efficient storage scheme, the size of the volume may increase instead of decrease,
even if we take into account that the surface voxels are often less than the total num-
ber of voxels. The trivial data type for storing a shell, is a 1D list of quad-tuples,
containing(x, y, z, value). As an example we use a 8-bit grey-scale volume with
1000×1000×1000 voxels, where 1% of the voxels are surface voxels, i.e., 10E6.
Using ordinary implicit co-ordinates and storing all voxels, we need 1E9 bytes. If
we use the “trivial” shell data type we would need: 10E6 · 7 = 70E6 bytes, thus
a compression about a factor 14. We cannot get more compact storage with this
data type, as each quad-tuple(x, y, z, value) needs3 · 2 + 17 bytes. A more com-
pact storage of the surface voxels is achieved by grouping the co-ordinates in a way
that minimizes repetitions, and adding a small 1D or 2D header of pointers needed
for the co-ordinates we have removed. InSlice-based Binary Shell (SBS)by Kim
et al. (1999), two 1D arrays are used, one forz-index and the other for a list of
(x, y, value) triple-tuples of data. A random lookup of voxel(x, y, z) will proceed
as follows: checkz-index for start- and end-index for all voxels in the slice, which
is two quick lookups:z-index[z], z-index[z + 1]. Since the voxels in thatz-slice
are sorted according tox+ xsize· y, we can do a binary search of(x, y), aO(log n)
operation. Continuing the example above, we may now store the volume in: 10E6
· 5 + 1000· 4 = 50,004,000 byte, a compression about 20 times. The 1D array of
z-index, is used to aggregate all voxels with a commonz value, in the 1D data array.
This can be taken one step further, by using one 2D array of pointers and store the
surface voxels in a 1D array of pair-tuples(x, value). Then we would need: 10E6 ·
3 + 1000· 1000· 4 = 34,000,000 bytes, a compression about 29 times.

In Udupa and Odhner (1993) and Grevera et al. (2000), more information is
added to the(x, value) data tuple, to have information about the neighbouring voxels
opacity available. This lower the compression possible, but speed-up the rendering
as this extra information can be used to decide if the neighbours hide the current
voxel. Note that if we had chosen, e.g., 14% surface voxels in our example, the
space needed for the most compact shell data type would only compress a factor
two, compared to the implicit co-ordinate volume. Thus, how much it is possible to
gain by using a shell data type depends on the surface-to-volume voxel ratio.

VolView A volume visualizer made by KitWare, who also maintains the open source
Visualization Tool Kit (VTK), a popular graphics language on a higher-level than,
e.g., OpenGL. The latest version 1.3 of VolView is now very fast. VolView can
use both the hardware accelerated texturing features of a modern graphics card,
and supports the extremely fast voxel accelerated VolumePro graphics card. The
rendering in Figure 34 uses half of our dataset (115 Mbyte) and takes about 20
seconds on a 1.3 GHz Athlon PC. Noncubic voxels can be rendered, although we
had to set a voxel size of 1×1×5µm3, instead of 0.7×0.7×5µm3, as otherwise the
renderings looked more like stacks of slices than a volume. The cause may be a
normal estimation that cannot handle our anisotropic data directly.

The conclusions of our experiments are that digitized paper has such a high
surface-to-volume voxel ratio, that it is not a good idea to save the surface in a shell
data type, as that will at best compress about a factor two, but make random voxel
access slower. The low resolution in thez direction increases the surface voxel
count, as the larger movements will unveil more fibre material voxels to the back-
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ground, in combination with the fact that the fibre walls are so thin. Approximately
14% of all voxels are surface voxels in the paper model. In applications where more
solid and thick structures are to be stored, may have only a small fraction as surface
voxels, thus an opportunity for compression exist. We believe that volume rendering
using ShearWarp or QSplat is well suited to our images.

To create good-looking renderings, accurate surface normal estimations are es-
sential. The basic technique is to run a central difference operator on the voxel data.
While this is trivial to implement, the result may not be as good. More advanced
methods use a larger local neighbourhood to estimate the normal direction for each
surface voxel. Estimating surface normals can be rather time consuming, so if we
need to store these vectors as well as the fibre labels (to lower the rendering time),
even larger data structures are needed.
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Figure 34: One half of the digitized paper, size 1500×768×102 voxels. The upper
rayon fibre is visible, and some of the internal fibres have been split by our virtual
cutting, revealing the inside of the fibre wall.
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4 Summary of the included papers

For those that prefer to have a slightly more detailed alternative to abstracts, but
shorter than the full paper, this section will give you the main content of each of the
enclosed papers.

4.1 Paper I: Comparison of two different approaches for paper
volume assembly

The optical light microscopy data set from STFI and the SEM data set from Stora-
Enso were compared, to evaluate which set is the most appropriate to use for indi-
vidual fibre segmentation of 3D images. Since both approaches require microtomy,
i.e. slicing of thin sections iteratively to unveil the inner structures for the 2D image
capturing device (CCD camera or SEM electron counter), similar errors caused by
the cutting are introduced in both methods. Thus we compare the imaging tech-
niques only. Due to the high demands on low geometrical distortions, we prefer the
SEM setup, as it is then possible to image each 2D image slice at the remaining
paper block of the sample, which will result in much less geometrical distortions of
the sample. During the microtomy process both the paper block and the sliced off
thin section will be distorted by the forces from the knife. Since the surface of the
paperblock has a large support, it can recover from much of the elastical deforma-
tions, while using the cut-off thin sections directly would be a less ideal choice for
imaging. By small distortions we mean below 2–3µm in our case. Even if the CCD
camera has higher contrast, it was of no advantage to us. On the contrary, it makes
the segmentation between void areas and fibre material much more complicated due
to less bi-modal histogram shape. We conclude that the SEM setup is superior and
we will use this in our further studies.

4.2 Paper II: Minimizing scanning electron microscope artefacts
by filter design

As noted in Paper I, the contrast of SEM images are quite low. This is especially true
as we have a time constraint due to the fact that we need to capture a large number
of 2D images for the 3D image reconstruction. That is why we experimented with a
new type of filter that performs a non-linear filtering of the image to both preserve
edges and smooth the image into a near binary image. There already exist many
approaches to this problem, but nonetheless, this new filtering approach can be used
as a complementary technique for blurred binary images. Compared to other filters,
e.g., median image filtering, this filter is faster and has the same straightforward
implementation. The idea is based on the following: we assume the image is a
binary image which has been blurred by a point spread function (PSF), caused by
combined camera filters during the imaging. Making an initial segmentation by
hand, we select the fibre objects and perform a distance transformation from these
pixels. Using these DTimage values, we can obtain an average profile of how a step
transition (the assumption) has been blurred by the PSF. The second part is to use
this estimated PSF to restore as much as possible of the original unblurred image.
Taking advantage of our DT approach we do not calculate the inverse PSF and
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convolve the image by a discrete mask. Instead, we can reuse the DTimage values
and the DTimage profile. Simple lookup and subtraction of the profile will ensure
that, on average, the adjusted DTimage profile will be a step function. We tested and
compared with different convolution based approaches, as to optimize a discrete
kernel mask, Wiener filtering, and iterative blind deconvolution. The developed
method is simple to implement, has only one parameter (the initial segmentation)
and was able to attenuate the background variance in our images by 50%.

4.3 Paper III: Slice based digital volume assembly of a small pa-
per sample

Having a stack of unregistered but filtered 2D images, we would like to assemble
them into a registered 3D image. Since there exists no ideal devices for capturing
3D images of paper, it needs quite a long procedure, since we first have to split the
paper sample in parts during the cutting process and later reassemble the 2D images
into one 3D image.

As the paper material is often a thin sheet, it is preferable to create 2D cross-
sectional images that have a higher aspect-ratio than the standard CCD resolution
of 1024×768. By taking three overlapping images at each cut-level, we can register
these into one 3072×768 image. To get a reasonable fast and accurate registration
we use Hierarchical Chamfer Matching, with a final tuning and comparison done
with local correlation. The next registration step is more difficult, since the relatively
thick slices we cut off will make adjacent images quite different. Using correlation
or template matching is not robust enough for this. Instead, we used landmark based
registration, which assumes knowledge of some nodes in each 2D image that should
be connected through the 3D image as a smooth path. Since a fibre can bend quite
much, and may not exist in all paper slices, we manually selected a few “good”
ones. We used the two straight Rayon threads that were positioned at the paper
surface explicitly for registration purposes. Restricting the transformation allowed
to be affine, i.e. a linear transformation on the form[u; v] = [a, b, c; d, e, f ]·[x; y; 1],
we were able to obtain an accurate registration even with rather few landmarks.
Evaluation was done by visual inspection. We only detected a few areas which had
local movements above 2–3 pixels. The remaining, i.e., most, regions of fibres had
a smooth path through the 3D image.

4.4 Paper IV: 2D Segmentation and labelling of clustered ring-
shaped objects

The methods described in Papers I, II, and III, have reconstructed the 3D structure
of paper. Hence, we now have a voxel based representation of the paper sample.
From this we can have the information each voxel, if it is fibre material or void.
From this low level information we want to detect as many fibres as possible, by
clustering together sets of voxels that belong to a specific fibre. This is a complex
task, since the shape variations for fibres are quite large. After some problems, we
realized that it is less difficult to create a fibre detector if we concentrate on the
fibre lumen instead of on the fibre wall. Even if this approach will exclude fibres
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with no lumen (no interior void), we believe it is a key to good segmentation. To
further simplify the segmentation we analyse a 2D image, i.e. cross-sections of the
3D image. Working on the 3D image is preferable, but much more complicated.
The basic idea is to segment a set of lumen candidates. For each of these we try
to assess if it has a surrounding wall of fibre material. If so, we assume it is a
fibre. By calculating a local DT around each lumen candidate and measure the ratio
of void to fibre material pixels at each distance value, we obtain a profile of the
fibre material density. For an ideal case, a fibre with constant wall thickness, no
adjacent fibre walls and no cracks (open pores in the wall), the profile will be a step
function. As an initial approach this seemed promising, but later on we discovered
that throughout the entire volume, too few fibres were detected with this approach.
Instead we continued with 3D methods (See Sections 3.8.2 and 3.8.3).

4.5 Paper V: Ring-shaped object detector for non-isotropic 2D
images using optimized distance transform weights

The method in Paper IV is only applicable to 2D images with square pixels, so here
we extend it to rectangular shaped pixels. This is needed when the resolution is
different in different directions, as in our case. You could avoid this by interpolating
a set of virtual intermediate pixels, but this can be complex for the difficult shapes
of the fibres and will also require larger images, thus longer processing times. As
our main tool is based on the use of the DT, this can be avoided by optimizing the
chamfer weights used in the computation of the DT for pixels of size 0.7×5µm2,
instead of square pixels. After that the method described in Paper IV can directly
be used. Comparing the results to an interpolated image, we note that although
the resolution of the wall profile is much less in the original image, we reach quite
satisfactory results even though the pixel size ratio is as high as seven. However, the
same limitations as in Paper III still exist, i.e., the method only use 2D information.
This is not a feasible approach when a large amount of fibres need to be detected.

4.6 Paper VI: Some measurements of fibres in volume images of
paper using medial representations detected on the distance
transform

Even if only some of the fibres are found by the method described in Section 3.8.3,
theseare individually segmented with a unique label and can be used when devel-
oping measurements for fibres in true 3D images derived from a real paper sample,
this has never been done before. An important task is to select a suitable represen-
tation (data type) of the fibre. We use two, since it is advantageous to treat the fibre
wall and fibre lumen separately. The wall is represented as a medial representation
of centred voxels within the wall, producing an inner surface structure which is one
voxel thick, following the original shape of the fibre wall. In each of these surface
voxels, the distance to the closest void voxel is stored. This can be calculated by
using DTs. The DTimage is iteratively thinned: one DTimage layer is removed at
each iteration, while preserving the structure of the wall, i.e., without adding or re-
moving cavities or tunnels in the surface. From this representation, we can then
directly obtain estimates of, e.g., fibre wall thickness. The lumen representation is

58



created by a similar procedure, creating a 3D curve through the centre of the lumen
with the radius to the closest wall voxel in each of the curve voxels. We can use the
two representations to guide the computations of a number of measurements that
will characterize each fibre: fibre wall volume, fibre lumen volume, fibre length,
average fibre wall thickness, and degree of collapse. We continued developing more
measurements in Papers VII and VIII. Maybe the most interesting aspect with these
measures is the level of details possible to obtain. Even if we take into account the
errors from the 3D reconstruction and segmentation, the amount of detail for each
single fibre we manage to segment is extremely detailed.

4.7 Paper VII: Estimating fibre twist and aspect ratios in 3D
voxel volumes

Continuing thinking about what to measure that is both possible to implement and
useful for fibres in three spatial dimensions, we developed twist and aspect ratio
measures. Both these measures definitely need to use information based on three
spatial dimensions. Aspect ratio can be measured from cross-sections only, but will
not give as accurate measures for an entire fibre, as a 3D analysis is capable of.
Both measures rely on accurate cross-sections along the fibre length, thus we must
estimate the local orientation, i.e. where the fibre is heading in the 3D voxel space,
since we move along the fibre lumen curve. We fit a line to the local neighbourhood
using least squares, which was robust enough for our case. Using this direction
estimation as the normal of a local plane, we resample the voxels that intersect
that plane to get a cross-section that is perpendicular to the local direction. Using
principal component analysis of the wall voxels in this plane, we obtain a base vector
along the axis of maximal variance and a third perpendicular vector. The local aspect
ratio is now the width/height ratio in this local co-ordinate system. By averaging this
ratio throughout the fibre, we get an accurate estimate of aspect ratio for a single
fibre. The twist measure should not include the effect of fibre bending. To attenuate
this effect, we project a vector of maximal variance from a neighbouring voxel onto
a local plane that has its normal vector parallel to the estimated local orientation. To
be able to assess at least a rough accuracy estimate, we constructed a set of simulated
fibres with known geometrical properties and compared the twist and aspect ratios
from the voxel volume to the exact one. The aspect ratio estimated was only a few
percent from the exact measure derived from the spline parameters, which is good.
Twist is a more complex property to measure. We believe that the 10–15% error our
method has, is still within reasonable limits.

4.8 Paper VIII: Using distance transform based algorithms for
extracting measures of the fibre network in volume images
of paper

Our representations, introduced in Paper VI, were not fully exploited, so we contin-
ued with more measurements. Compared to Paper VI, we have added fibre slender-
ness, free fibre length, fibre curl, torsional resistance, and paper density. Slenderness
measures the length to diameter ratio, curl how much the fibre swirls around (non-
straightness), and torsional resistance the ability of the fibre to resist rotation during
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twisting forces. Free fibre length is a network-level measure, thus relating proper-
ties from several neighbouring fibres. It measures the total length of the part of a
fibre that does not touch another fibre. It can be seen as a density measure based
on a fibres 3D position. Paper density was estimated by the “rolling ball” tech-
nique. Since the paper surface is quite complex, we need to smooth it to be able to
set a fixed surface that differentiate between paper and non-paper. Rolling ball is
implemented efficiently by a 3D DT, where the ball radius determines the level of
smoothing. Essentially all measures can be divided into three classes, depending on
their type: (1) paper level; (2) fibre level; and (3) network level. As noted, we have
only one paper level measure (density), caused by the relatively small paper sample.
Larger samples are needed to measure paper level properties. Fibre level is anything
which characterizes single fibres. Since the fibres have quite complex shapes, there
are many things to measure using 3D analysis. The network level, measuring how
fibres interact has largely been left out because of the problem of finding enough
fibres to sample the true network in a reasonable way.

4.9 Paper IX: 3D Pore distribution estimation in digitized paper
samples

Paper is a porous media, where large parts of the interior are pockets of void. Most
of our efforts have been focused on the fibres, but the void is also a network of
complex shape that very much influences paper properties. In fact, it is a kind of
“inverse fibre network”. An example of a 3D measure for the voids, is to determine
their size distribution, i.e. a histogram of the void volumes, and if there are any
systematic variation along paper thickness. To be able to measure individual void
volumes, we need to segment the void and also define how to separate void regions
that are interconnected but are reasonable to define as separate. We tried to use
the 3D watershed transform for this purpose. To eliminate the large number of
the small pockets, we pre-filter the image to close these. This is in fact a kind of
weak smoothing. Moreover, we compared their approach to a 3D scanning method
developed at PFI (the Norwegian Pulp and Paper Research Institute), which avoids
the segmentation step and still can provide the average size distribution of pores.
We were not able to accurately segment the pore network into individual regions.
Most certainly an improved pre-processing for the watershed based segmentation,
alternatively another more suitable approach will be needed. Inspired by the PFI
approach of void analysis without segmentating individual pores, we introduce the
idea of using the histogram of the DTs to compare the pore size properties of a paper
sample. As no spatial localization is possible with this approach, we instead add a
method to measure how the pore density (porosity) varies as a function of surface
distance.
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5 Conclusions and further results

The procedure we developed to digitize a sample of paper works well. It combines
the unique properties of Scanning Electron Microscopes with the high-precision mi-
crotome cutter, to sequentially produce a stack of image slices from a paper sample,
which we can reassemble into an accurate 3D digital voxel volume. The geometrical
distortions are small, and furthermore, it is possible to digitize larger pieces of pa-
per using the same approach. In this section, we will conclude with some reflections
and future ideas.

The amount of accuracy required for registration is very high. This is caused by
the fact that we are trying to simulate a 3D imaging device by capturing a sequence
of 2D images and patch these together. Any misalignment during this process will
undoubtedly introduce artefacts. They are visible as a kind of aliasing, seen as
jerky/choppy translations of fibres as well as scattered material inside the paper
when you browse through the volume looking at 2D cross-sections. Furthermore,
the difference in resolution aggravates this problem, since we only have 1/7 of the
xy-resolution along thez-axis. This is the cause of the large difference between
adjacent slices. To be able to interpolate, we need to find the fibre cross-sections in
order to distinguish which regions belongs to each other. Simple grey-level interpo-
lation does not give satisfactory results in this case, since the differences in position
are well above one voxel diameter for adjacent slices. If we only were supposed to
measure fibres on one 2D image at a time, the geometrical errors would only influ-
ence the accuracy of our measurements, not the ability to find the fibres. To be able
to have a good chance of finding fibres in 3D images, an accurate registration and
mosaicing is crucial.

It is reasonable to not expect both 1µm resolution and to cover an entire A4
sheet of size 297×210×0.10mm3, when digitizing a paper. Just imagine captur-
ing this sample at 1×1×1µm3 voxels: we would have 297,000×210,000×100
≈ 6 Tbyte of data! And, as you may have realized by now, we would not only have
the sheer load of data, but moreover to extract a good percentage of the fibres in a
paper sample. This is a complex task that needs further study before it is reasonable
to try on even larger samples.

The most difficult part of the project has been the segmentation of individual
fibres. Perhaps the most annoying issue with 3D image analysis is the fact that
you know you have an extreme amount of data, and you just want to abstract this
information into a higher level, e.g., to find some fibres. By only browsing through
the data and looking at the image slices, it is easy to get an impression that this
should not be difficult, but we assure you, do not try this at home.

By adapting and combining two 3D image analysis methods developed for arter-
ies segmentation (Ordered Region Growing and SeparaSeed) we developed a fibre
tracking algorithm that can provide a good base for individual fibre segmentation,
where there are high demands on accuracy and robustness is required. The experi-
ments we did on 2D based methods shows that they are not as robust as our 3D based
algorithm. By looking at the changes needed for the 3D based method, we want to
point out that even if the medical imaging and paper analysis domains should and
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can share methods successfully, it is not a straight-forward task to convert methods
between these different areas. However, if we had found the ORG method earlier,
the focus would definitely have changed to true 3D segmentation much sooner, since
this method suits our problem well. The SeparaSeed has been developed at CBA, so
it was easy to get good local support when we found good use of this nice algorithm
in our project as well.

To be able to measure the fibre network accurately, we do need to improve
the segmentation method, since a high percentage of the total amount of fibres is
needed. In principle, these measures are not more difficult to implement than the
measures based on single fibres. As can be seen in the published papers, a large
amount of fully 3D measurements of fibres have been developed, and as far as we
know, true 3D measures with this level of detail for fibres has not been done before.

Validation of achieved measurements is also an issue. Ideally, an alternative
technique would be useful to have something to compare with. We have tried to
the best of our knowledge to implement sound measures, but a thorough estima-
tion of the accuracy they can provide would be needed before they are practically
useful. Since our methods are focused on individual segmentation of approximately
cylinder-shaped fibres, any paper grade that does not have this kind of fibres will not
be possible to analyze. Comparing the light microscopy and the SEM datasets, the
LWC paper presents a considerably harder individual fibre segmentation task than
the milk-carton in the SEM volume. Even assuming we could register and assemble
these into an accurate 3D voxel image, our individual fibre analysis would not be
able to find as many fibres as we can in the SEM dataset. The type of paper grade
selected do influence how well our methods perform. An improvement would be
to incorporate additional segmentation methods to handle the other types of objects
that do occur in digitized paper samples. This would allow a more complete analy-
sis, although how far we can get in this digital conversion, and analysis process, is
difficult to speculate about.

It should be obvious that the task of digitizing a piece of paper, involves quite a
large effort. Although some prefer to denote the result of this digitization a model,
we believe that identifying many of the individual fibres and classifying the remain-
ing parts of the paper are important steps forward. Until this is successfully imple-
mented we cannot really say it is a digital model of paper. Although many measures
do not require individual labelled fibres, we hope that the work done in this Thesis
show that by doing so, many more opportunities for measures will be available. The
scale of this problem is easy to underestimate, since there are both many practical
details during the programming that is essential, as well as the development of the
image analysis methods.

Our current use of the SeparaSeed method assumes that the diameter of all the
wall holes and “glitches” due to anisotropic sampling are less than the diameter of
the nearby lumen region, otherwise the lumen region will “leak” into the paper void
region. By tuning the way we define connectivity, e.g., combining our DT based
measure with local measures of the fibre shape around the ORG path, it should be
possible to steer the SeparaSeed to favour filling along the ORG path and not as fast
in the perpendicular direction. The surrounding DTimage shell approach could be
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improved to handle even more neighbouring fibre material, so that tightly clustered
fibres may have a more accurate segmentation of the fibre wall.

Segmentation for fibres without lumen but with adjacent fibres and filler material
has not been considered yet, since that is probably an even harder problem. As
the ORG method seems robust, an idea would be to seed the start and end of a
lumen-less fibre, either by hand or if possible by automatic seeding, then let the
ORG trace out a path between these points. It would certainly be necessary to add
different restrictions, as curvature limiting the path, or maybe fit a 3D spline, to
guide the ORG method. It may prove possible, but as we essentially can have a
large blob of fibre material at any place inside the paper, it may only be reasonable
for fibres with relatively small contact area to adjacent material. The fibre material
not successfully segmented could maybe be classified asBLOBand still contribute
to the calculations. A more parallel approach of finding the fibres seems a good
idea, as they can cooperatively help to resolve which part should belong to which
fibre, a task that is less robust when only analyzing one fibre at a time, as we did. We
estimate a subset of the total fibre network with our approach and it may be possible
to iteratively find better solutions. After the first iteration we have a set of fibres with
an estimate on their path through a 3D space and which voxels they are composed
of. The next iteration could use this, and may improve the fibre segmentation.

Even if the development of methods to perform the network-level measurements
is not more difficult, they require an improved segmentation that can detect a large
percentage of the fibres, to be of any use. Developing a more automatic seeding
procedure would be an improvement for the ORG based segmentation, since manu-
ally marking start and end points for all fibres would be a too tedious task for large
data sets. Since everything computer related is getting faster, it seems reasonable to
anticipate much larger data sets and then more automation is needed. Some sort of
skeletonization of the non-fibre-wall material could provide a start set of voxels to
use for seeding, if an intelligent selection could be made, which is certainly not a
straight forward task.

It was more fun to do the segmentation based on a 3D voxel space for our fibre
material, compared to analysis of 2D images, which was developing into more of a
test of endurance than improving the code. Focusing on methods for three spatial
dimensions seems the obvious way to go, since only then the advantage of a captured
3D data set is fully utilized.

The experiment we did on 2D Gradient Vector Flow (GVF) snakes was interest-
ing and instructive. We feel that snakes do have a lot of potential for segmentation,
if only it were possible to increase their robustness, maybe by a human-in-the-loop
approach as done in the “Live Wire” concept (Falcão et al., 1998). It is an appeal-
ing concept, restricting local shape deformations, but still enables the surface of the
snake to adapt to a given shape. Using surface snakes in the spatial dimensions
to find the boundary between the lumen and the inner fibre wall surface, would be
an interesting experiment. Still, our focus on discrete voxel based methods feels
competitive, as they often are much more efficient than snakes.

There is ongoing work with simulations of mechanical properties of fibre net-
works, which could be combined with our approach of finding fibres in a real paper
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sample, to enable advanced simulations of some of the mechanical properties of the
paper. In the thesis of Heyden (2000), she uses a Finite Element Method (FEM)
to estimate material properties of fibre fluff. This material is less dense than paper,
but also has a complex network of fibres. FEM is a general method to simulate the
behaviour of large models with properties governed by differential equations. Since
the resulting equation system can be very large, especially for complex 3D mod-
els, a fast parallel computer may be required to get reasonable computation times.
FEM simulations has been used with great success to estimate temperature distri-
bution, fluid flow, mechanical deformations, and more. For instance, SAAB uses
FEM based computer simulations for their 3D car models, to predict aerodynamic
behaviour and also for collision simulations. By using a single 3D voxel fibre as
geometrical input to a FEM solver, it would be possible to predict its behaviour
during different kinds of load conditions. Simulating a large piece of the fibre net-
work would give even more valuable information on the mechanical properties of
the digitized paper sample.

Since the entire process of creating paper already is model-based, as each com-
puterized process control equipment is based on its own model, constantly fine-
tuned to perform better, it seems reasonable to continue and also model the end-
product, the paper. Model based approaches are nice in the way they can bring order
out of chaos. The simplifications introduced make the problem more manageable
and still some of the main properties can be preserved. Our attempts can hopefully
provide a starting ground for others interested in paper analysis, by pointing at the
specific problems that need to be solved and why they are difficult.

The idea of converting a paper into digital format, really unlocks many possi-
bilities of advanced paper analysis. This is of course biased by our preference for
computer science and image analysis, but anyway ...

CALVIN AND HOBBES c©Watterson. Reprinted with permission of
UNIVERSAL PRESS SYNDICATE. All rights reserved.
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