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Abstract

Teterukovskiy A. 2003. Computational Statistics with Environmental and

Remote Sensing Applications. Doctoral dissertation.
ISSN 1401-6230, ISBN 91-576-6511-7.

This thesis deals with application of several methods of computational
statistics to the estimation of the parameters in various models in remote
sensing and environmental applications.

The considered methods and applications are the following:

• mapping of the spatial distribution of reindeer in the case of the
incomplete ground survey by the Gibbs sampler

• detection of small-sized tracks in aerial photos and satellite images
with help of the Gibbs sampler

• contextual classification of multispectral images with spatially cor-
related noise using Markov chain Monte Carlo methods and Markov
random field prior

• maximum likelihood estimation of the parameters of forest growth
models with measurement errors

• maximum spacing estimation based on Dirichlet tesselation for uni-
variate and multivariate observations.

In paper I we try to answer the following question. In mapping of animal
distributions what is the minimum adequate number of plots one must
survey to maintain a high accuracy of prediction? We use the Gibbs sam-
pler to simulate the data for unsurveyed plots, and then use the simulated
data to fit the autologistic model.

In paper II we propose an algorithm for extracting small tracks from
remotely sensed images. We specify several prior distributions of varying
complexity, and calculate a maximum a posteriori estimate of the map of
tracks using the Gibbs sampler.

Paper III deals with classification of multispectral imagery in presence
of autocorrelated noise. By means of simulation study we show how the
classification results of conventional algorithms can be improved by adopt-
ing the Markov random field prior model.

In paper IV the forest growth model with measurement errors is intro-
duced. We establish some asymptotic properties for maximum likelihood
estimates of the parameters of this model.

Paper V is devoted to maximum spacing estimation based on Dirichlet
tesselation. We prove consistency of such maximum spacing estimate in
univariate case and conjecture it holds in higher dimensions.

Keywords: spatial autocorrelation; road detection; misclassification rate;
consistency; efficiency.
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1 Introduction

This thesis is devoted to the application of several methods of computa-
tional statistics to the estimation of the parameters in various models in
image analysis and environmental applications. In papers I, II and III
the approach is in principle Bayesian, and the Markov chain Monte Carlo
method called the Gibbs sampler is used to obtain the maximum a pos-
teriori estimate (MAPE) of the parameters. In paper IV the maximum
likelihood estimate (MLE) of the parameters of the non-linear regression
function is sought, and, finally, in paper V, the maximum spacing esti-
mate (MSP) based on Dirichlet tesselation for univariate and multivariate
observations is investigated.

2 Bayesian inference

Since the first three papers of the current thesis are dealing with methods
of Bayesian statistics, we start with brief formulation of the problems of
Bayesian inference.

From a Bayesian perspective, both the data and the parameters of the
model governing the data, are treated as random quantities. Let us denote
the data by D, and the parameters by θ. Then the joint distribution of the
data and the parameters can be written as P (D, θ) = P (D|θ)P (θ), where
P (θ) is the prior distribution and P (D|θ) is the distribution of the data
given the parameters, or the likelihood. Application of Bayes theorem

P (θ|D) =
P (D|θ)P (θ)

∫

P (D|θ)P (θ)dθ
(1)

allows us to obtain the posterior distribution P (θ|D) which is the main
point of interest in Bayesian statistics.

Most problems with Bayesian analysis stem from the fact that the
“real” prior distribution is usually unknown and specified, to a certain
degree, subjectively. If the chosen prior distribution considerably deviates
from the “real” one, the Bayesian analysis can produce misleading results.
In practice, however, the realistic choice of the prior distribution gives way
to trustworthy results that would be hard to obtain otherwise.

By sampling from the posterior distribution one can make inference
about the unknown parameters of the model. The latter can also include
the unobserved part of data (see, for example, paper I of the current thesis).

One way to perform this inference, is to estimate the mode of the
posterior distribution. Thus one obtains the MAPE, which is very often
used in image analysis applications (see, for example, Besag (1986) or
papers II and III of the current thesis).
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The integration in (1) is the cause of the practical difficulties for the
Bayesian inference in high dimensions. It is possible to tackle this issue
by taking one of the dynamic Monte Carlo (i.e. numerical) approaches
known as Markov chain Monte Carlo (MCMC) methods (see, e.g. Smith
and Roberts (1993)).

3 MCMC methods

MCMC methods provide a framework for analyzing many complicated
problems by realistic statistical modeling. As is obvious from the name
itself, MCMC is essentially the numerical (Monte Carlo) integration cou-
pled with Markov chains. The original idea, introduced by Metropolis et al.
(1953), is as follows. Suppose we need to sample from the given probability
distribution. In many real-life situations direct sampling is impossible due
to either the high-dimensionality of the data or the complicated structure
of the distribution of interest or both. If this is the case, a Markov chain
can be constructed in such a way that (i) it is easy to sample from, and (ii)
after running the chain for a long time, samples from the chain become ap-
proximately the same as the samples from the required distribution. Out
of many ways to construct such chains, we have chosen one which is conve-
nient for our applications. Although it was known in statistical physics as
the heat bath algorithm, it was introduced into mainstream statistics by
Geman and Geman (1984) who called it the Gibbs sampler. Below we will
describe the Gibbs sampler, but before that we will give some definitions
and results from the Markov chains theory. These concepts are required
for better understanding of the Gibbs sampler.

3.1 Markov chains with finite state space

Let X be a finite set called state space. Let us also specify a family
P (x, ·), x ∈ X of probability distributions. This family will be called tran-
sition probabilities or a Markov kernel. Suppose that starting with element
X0 ∈ X we sample each subsequent state according to the corresponding
distribution from a Markov kernel. The sequence X0, X1, . . . is called a
Markov chain, if Pn(x, y) = P (Xn = y|Xn−1 = x,Xk, k < n − 1) =
P (Xn = y|Xn−1 = x) for all n. A Markov chain on the finite space X

is determined by the initial distribution ν, from which the starting state
is sampled, and a collection of transition probabilities P1, P2, . . . on X.
Consider the following definition.

Definition 1 Let µ be a probability distribution on X. If distribution µ
satisfies µP = P for some distribution P then distribution µ is called

invariant or stationary for P .
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Subject to regularity conditions, the Markov chain gradually converges
to a unique stationary distribution, regardless of the initial distribution
used. Therefore, after a sufficiently long burn-in phase, samples from the
chain will look like the samples from the stationary distribution. This
result will be made exact by the following theorem.

Let us denote by c(P ) the following quantity called the contraction

coefficient :
c(P ) = 1

2
maxx,y ||P (x, ·) − P (y, ·)||,

where the norm is given by

||P (x, ·) − P (y, ·)|| =
∑

z

|P (x, z) − P (y, z)|.

The following theorem (see, for example, Winkler (2003)) reads

Theorem 1 Let Pn, n ≥ 1, be Markov kernels and assume that each Pn

has a stationary distribution µn. Assume that the following conditions are

satisfied
∑

n

||µn − µn+1|| < ∞,

lim
n→∞

c(Pi . . . Pn) = 0 for every i ≥ 1.

Then µ∞ = limn→∞ µn exists and uniformly in all initial distributions ν,

νP1 . . . Pn → µ∞

for n −→ ∞.

3.2 The Gibbs sampler

The question that remains now is how to construct such a chain that
its stationary distribution would be the distribution of interest. We will
describe one way to do it, namely the Gibbs sampler, which was used in
papers I-III of this thesis.

Suppose that each component x ∈ X can be decomposed into a number
of components xi, i = 1, . . . , k. Let us denote our targeted distribution by
π(x) = π(x1, x2, . . . , xk). In many cases when sampling from distribution
π(·) is impossible, it is possible to sample from the conditional distributions
π(xi|x−i), where x−i = {xj , j 6= i, j = 1, . . . , k}, i = 1, . . . , k.

First, let us pick an arbitrary starting configuration x0 = (x0
1, . . . , x

0
k).

The Gibbs sampler operates as follows:

• sample x1
1 from π(x1|x0

−1)

• sample x1
2 from π(x2|x1

1, x
0
3, . . . , x

0
k)
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• . . .

• sample x1
k from π(xk|x1

−k).

At this moment one sweep of the Gibbs sampler, i.e., the transition to
configuration x1 = (x1

1, . . . , x
1
k), is completed. Sweeps are repeated until

the chain has converged. Recall that there were no restrictions on the
visiting scheme. The components to be updated may be chosen randomly
or in strict order, provided only that all components are visited infinitely
often (for theoretical convergence).

One must note that if the updated components are strongly correlated,
the convergence will be slow due to little movement at each step. To
avoid this problem joint updating of blocks of correlated components can
be considered. Of course in this case one is forced to sample from the
multivariate conditional distributions.

3.3 Determining the stopping time

After running the chain for sufficiently long time its distribution approaches
the stationary distribution. Convergence rates for the Gibbs sampler and
other MCMC methods are studied, for example, in Frigessi et al. (1993).
There exist several rules that help to determine when to stop the pro-
cess (Propp and Wilson (1996), Brooks and Roberts (1999), etc.). The
method called coupling from the past and due to Propp and Wilson (1996)
is particularly interesting as it provides perfect sampling, i.e., its output
are samples exactly from the desired distribution. The idea behind this
method is to consider copies of the Markov chain starting in all possible
states at some time in the distant past, and to run them until time 0. If
all copies at time 0 are identical, it means that the value at time 0 does
not depend on the starting configuration and therefore can be taken as a
final output. If not all copies are identical, then an earlier starting time is
tried. This technique obviously requires a lot of computer resources both
in terms of memory and of time, although if the state space has a partial
order which is preserved under the transition of the chain, the efficiency is
improved. Various modifications of this method for complicated situations
with no partial order in the state space (see, for example, Häggström and
Nelander (1999)) as well as the improvements which help reduce the time
to coalescence (Meng (2000)) recently appeared.

4 Image as a Gibbs field

Now we shall reformulate the notions defined above in terms appropriate
for image analysis. Let S be a finite index set - the set of sites (e.g. pixels).
For every s ∈ S let Xs be a finite space of states xs (colors or gray levels).
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The finite product X =
∏

s∈S Xs is the space of finite configurations x
of size |S| (all possible images). Let us consider probability measures
(distributions) Π on X. A strictly positive probability measure Π on X is
called a random field. Any such measure Π can be written in the following
form:

Π(x) =
exp(−H(x))
∑

z∈X

exp(−H(z))
. (2)

This representation of Π is called the Gibbs form or Gibbs field induced
by the energy function H(·). It is easy to notice that every random field
is a Gibbs field for some energy function.

For a given subset A ⊂ S let us consider the conditional probabilities
of the form

Π(XA = xA|XS\A = xS\A), xA ∈ XA, xS\A ∈ XS\A.

These Markov kernels are called the local characteristics. Suppose that
the chain is currently in state x, and next state is y, that differs from x at
most on A. Then the transition probabilities in Gibbs form will be

ΠA(x, y) =















exp(−H(yAxS\A))
∑

zA

exp(−H(zAxS\A))
if yS\A = xS\A,

0 otherwise.

(3)

If the local characteristics depend only on a small number of neighbors,
then they can be evaluated easily. Note that the summation in denomina-
tor of the above formula involves only a small number of terms.

Taking into account the form of local characteristics, it can be easily
shown that the Gibbs field Π is invariant for its local characteristics and
hence for composition of local characteristics too.

4.1 Simulated annealing

As soon as the stationary distribution of the Gibbs sampler is attained,
another problem can emerge. In image analysis applications, the posterior
distributions are typically multi-modal. If one is interested in the mode
of the posterior distribution, then the main question that arises is how to
make the Gibbs sampler to locate the global maxima of the posterior dis-
tribution. A simple modification of the Gibbs sampler helps to solve this
problem. Recall the energy function H(·). Maximization of the distribu-
tion in the Gibbs form is equivalent to minimization of its energy function.
It is clear that function H(·)β for large β will have the same minima as
H(·) but deeper. The following result (see, for example, Winkler (2003))
holds.
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Lemma 1 Let ΠHβ be a Gibbs field with energy function H(·)β. Let M
denote the set of global minimizers of H. Then

lim
β−→∞

ΠHβ =

{ 1
|M | if x ∈ M,

0 otherwise.
(4)

This means that the Gibbs sampler converges for each ΠHβ , and the limits
in turn converge to the uniform distribution on the minima of H. The fol-
lowing theorem states that increasing β in each step of the Gibbs sampler
gives an algorithm that minimizes H. Let β(n) be an increasing sequence
of positive numbers. It is called a cooling schedule and its values the in-

verse temperature. After each sweep of the Gibbs sampler, the inverse
temperature is increased to the next value according to the cooling sched-
ule. Let us denote by Pi the transition probability of the i-th sweep of
the Gibbs sampler. It is in fact a product of the transition probabilities
for single pixels (taken at the same temperature). The following result
(Winkler, 2003) holds

Theorem 2 Let |S| be the number of pixels in the image. Let β(n) be a

cooling schedule increasing to infinity such that

β(n) ≤ 1

∆|S|
for some constant ∆. Then

lim
n−→∞

νP1 . . . Pn(x) =

{ 1
|M | if x ∈ M,

0 otherwise
(5)

uniformly in all initial distributions ν.

Remark : Instead of sampling from the conditional distributions one can
simply choose a mode of such distribution. This can be understood as
a variant of simulated annealing at infinite inverse temperature. This
method is called Iterated Conditional Mode (ICM), and it is analogous
to maximal descent algorithm in optimization. The ICM converges much
faster than the Gibbs sampler, but only to the local minimum of the energy
function. It still can be an appropriate choice in practice if the initial
configuration is close to the global minimum. We use the ICM in paper
III for reclassification, i.e. when the initial classification is obtained by
another method.

4.2 Ising model

Often it is possible to decompose the energy into the sum of individual
contributions of the subsets of S. This decomposition is particularly con-
venient for implementation of such methods as the Gibbs sampler, whose
transition probabilities are in form of local characteristics.
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Probably, the simplest example of such energy is the Ising field with
pairwise interactions. This model often serves as an example due to its sim-
plicity and to the fact that with its help all fundamental issues of Markov
fields can be illustrated. Besides, the Ising model and its generalization
- the Potts model, are very popular (though, supposedly, not best - see
Descombes et al. (1999)) choices for prior distributions in Bayesian image
analysis. Below we will describe the Ising model, show how to sample
from it using the Gibbs sampler and comment on its usability as a prior
distribution.

Consider a binary image with pixels taking values either +1 or −1
(in statistical physics, where the model was initially introduced, the pix-
els were particles, and the pixel values - spins). The Ising field in the
simplest case can be defined by an energy function of the form H(x) =
−β
∑

<s,t> xsxt, where <s, t> indicates that pixels s and t are first-order
neighbors. The positive parameter β controls the strength of attraction
between the neighboring pixels. The larger the β is, the more neighboring
pixels tend to be of the same color. In fact β is very close to the inverse
temperature described in Section 4.1. It is easy to guess how the configu-
rations of minimal energy for Ising model will look like. They are the two
single-color images with all pixels colored either as −1 or as +1. There-
fore, the probability distribution function of the Ising field has exactly two
equal modes.

The existence of multiple modes brings about several problems. First
of all, it is a cause of the phenomenon called the phase transition, which
is a coexistence of different phases below some inverse temperature (called
critical temperature), i.e., when the coupling between neighbors becomes
less strong. It means that at some temperature (equal to 0.44 in Ising
model) the realization of the random field becomes chaotic, e.g. in terms
of image analysis, the image loses all regular patterns. Apparently, such
prior distribution is not very informative.

Another problem is that an algorithm searching for a global minimum
of energy function, after finding it (or not!), may start searching for others.
Moreover, it will try to visit each single minimum again and again, thus
complicating the determination of the stopping time.

Now we will demonstrate how to simulate configurations of the Ising
field for a given value of β (we take the one well above the critical value)
with the help of the Gibbs sampler.

Implementation of the Gibbs sampler for sampling from the Ising field
can be done as follows. Start with a completely random configuration.
Update each pixel xs by sampling from the following Bernoulli distribution:

Πs(xs = 1) =
eβ
∑

s∈δs
xs

e−β
∑

s∈δs
xs + eβ

∑

s∈δs
xs

,

Πs(xs = −1) = 1 − Πs(xs = 1),

13



where δs is a collection of four nearest neighbors of location s. It would
be much more efficient to update blocks of pixels simultaneously and in a
special order (see, for example, Winkler (2003)), but our example suffices
for illustrative purpose.

Figure 1 shows the pepper and salt initial configuration and config-
urations of the Ising field at inverse temperature 1.33 after a number of
sweeps. We note that at high inverse temperatures (such as the one we
have chosen), the image becomes degenerate (single-color), which is also
useless with respect to the prior distribution. In paper III, we use the Potts
prior, which is the generalization for several colors of the Ising model, and
choose the value of the coupling parameter β taking into account the con-
siderations described above.

0 10 20 30 40

0
10

20
30

40

0 10 20 30 40

0
10

20
30

40

0 10 20 30 40

0
10

20
30

40

0 10 20 30 40

0
10

20
30

40

0 10 20 30 40

0
10

20
30

40

0 10 20 30 40

0
10

20
30

40

Figure 1: Ising field after 0, 10, 20, 70, 180 and 260 sweeps

4.3 Constrained optimization

Suppose, our goal is to obtain a configuration x such that

x = argminx: V (x)=0U(x, y). (6)

One can think of the pair (U(x, y), V (x)) as the new energy function.
Since the observed data y is fixed, we will drop it from subsequent

formulas. A standard way to solve constrained optimization problems
such as (6) is to introduce a Lagrange multiplier λ. Sampling from

Π(x, β, λ) =
exp {−β(U(x) + λV (x))}

∑

x′

exp {−β(U(x′) + λV (x′))}
,

where the summation is performed over all possible configurations of X,
and gradually increasing the inverse temperature β and the Lagrange mul-
tiplier λ would solve the minimization problem. Whereas this is impossible,
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it is feasible to evaluate ratios of the form

exp {−β(U(x1) + λV (x1))}
exp {−β(U(x2) + λV (x2))}

(7)

and thus conditional probabilities.
Let us denote by Ω∗ the set {x : V (x) = 0}, and by Π∗(x) the proba-

bility measure concentrated on this set, where

Π∗(x) =
exp(−U(x))

∑

x′∈Ω∗

exp(−U(x′))
δΩ∗(x),

and δ(·) is the indicator function. Let us also denote by Ω∗
0 the subset of

Ω∗ where U(x) is minimal. So, Ω∗
0 = {ω ∈ Ω∗ : U(ω) = minx∈Ω∗ U(x)}.

Let us denote by X(k) a state of a Markov chain that we are constructing,
at iteration k. The following theorems (Geman et al. (1990)) hold:

Theorem 3 Let βk ≡ 1 and λk ↗ +∞, λk ≤ c · log k. Then

lim
k→∞

P (X(k) = x|X(0) = η) = Π∗(x).

Here c is a constant, and η is an arbitrary initial state of the process. The
second theorem is a convergence result for simulated annealing.

Theorem 4 Let βk ↗ +∞ and λk ↗ +∞, βkλk ≤ c · log k. Then

lim
k→∞

P (X(k) = x|X(0) = η) =

{

|Ω∗
0|

−1
, x ∈ Ω∗

0,
0 otherwise.

Example 1 We will now give an example how the Gibbs sampler can
be used for detection of objects in an image. In fact this example is a
simplified case of the problem considered in paper II of the current thesis.

Suppose that the true image depicts a small linear object such as a nee-
dle (Figure 2a). Let the image be degraded by noise (Figure 2b). Consider
the problem of locating the needle in the degraded image. As an output
of an algorithm we expect a binary map of the same size as the original
image, where presence and absence of the needle would be denoted as 1
and 0, respectively. We reformulate this problem in Bayesian terms as
follows.

Consider the following notations. Let y = {yij , 1 ≤ i, j ≤ N} be the
degraded image. Let us also introduce a dual matrix x of the following
structure. x = {xij , 1 ≤ i, j ≤ N,xij ∈ {0, 1}}. Let us call it a label
matrix. Elements of the label matrix are the binary values, representing
presence/absence of a needle at the corresponding pixel. We have actually
decomposed the data into two parts - observed and unobserved. Our aim

15
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Figure 2: (a) true image (b) degraded image

is to construct a posterior density of unobserved label matrix given the
observed image, and then find an MAPE by the Gibbs sampler.

Let us use the Gibbs representation for all considered probabilities.
We will treat this problem as one of the constrained optimization. Let the
energy function H(·) depend on both the observed image and the label
matrix: H(x, y) = U(x, y) + V (x). The first summand U(x, y) is a term
that accounts for data-label interaction, and the second summand V (x) is
a “pure” label contribution term, called the “penalty function”, that will
take only positive values. The larger the value of V (x) the less probable
is the configuration x. For U(x, y) we adopt the form

U(x, y) = −
∑

s

xs × Φs(y), (8)

where the summation extends over all pixels in the image. As Φs(y) we
take a function that measures the possibility that a given pixel belongs to
the needle. Φs(y) will be chosen so that pixels that are the likely candidates
for a needle produce positive value of this function, whereas the pixels more
likely to belong to the background produce negative values. Let us adopt
the following function. For each pixel s we calculate the four mean values
m1

s,m
2
s,m

3
s,m

4
s of the gray levels along the four pieces of possible straight

lines passing through this pixel (suppose for simplicity that the needle can
be oriented only vertically, horizontally or at angles 45◦ and 135◦). If the
pixel belongs to the needle, then one and only one of these mean values
will be an ”outlier” whereas the remaining three will be grouped together.
Otherwise, all four values will approximately be the same. As a measure
of possibility for a pixel to belong to the needle we choose

Φs = max
i

(|mi
s − median(m1

s,m
2
s,m

3
s,m

4
s)|) − const.

We subtract a constant, so that the function Φ would take both positive
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and negative values. Otherwise, (8) would always attain its minimum
at trivial single color configuration. As a constant we subtract the 98-
percentile of Φ = (Φ1,Φ2, . . . ,Φ|S|).

The choice of energy above was made out of the following considera-
tions. In states with low energy one expects pixels belonging to the needle
to be marked as 1 (−xs = −1,Φs > 0), and pixels from the background
to be assigned 0 (−xs = 0,Φs < 0). Recall that we seek the minimum
of the energy function. Penalty function (the second summand in the
energy function) is a number of forbidden patterns in the image. These
are patterns incoherent to our prior beliefs of the structure of the image.
Since we know exactly the object we are looking for, we consider crosses,
turns, extra-thick lines, loops, etc. as such patterns. Penalty function
helps to assign larger probabilities to configurations more resembling the
true image. After the energy function is specified, the Gibbs sampler can
be straightforwardly implemented.

The results of the detection by the Gibbs sampler coupled with simu-
lated annealing are displayed in Figure 3.
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Figure 3: iterations 1 to 5

5 Maximum likelihood estimation

Maximum likelihood estimation was introduced by English statistician R.
Fisher in 1912 and quickly gained world-wide recognition. We will for-
mulate this method for independent non-identically distributed (i.n.i.d)
observations, since this was the case in the problem motivating our study
(heteroscedastic regression).

For a sequence of independent random variables Yk, k = 1, 2, . . . , n,
which take values in some measure space and possess densities fk(yk,θ),
where θ ∈ Θ ⊂ R

m, the likelihood function takes form

Ln(θ) =

n
∏

k=1

fk(yk,θ).

The maximum likelihood estimator (MLE) of the true parameter value θ0
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is denoted by θ̂n and is defined to be any point in Θ such that

Ln(θ̂n) ≥ Ln(θ) for all θ ∈ Θ.

The MLE in i.n.i.d case under some conditions possesses a number of at-
tractive properties, such as consistency (Bradley and Gart (1962), Hoadley
(1971) or Borovkov (1998)), asymptotic normality (Roussas (1968), Hoadley
(1971) or Borovkov (1998)) and asymptotic efficiency (Borovkov (1998)).

5.1 Estimation of parameters in growth models

Growth functions are important tools for evaluation of the wood produc-
tion at alternative silvicultural regimes and the sustainability of forestry.
The modern multipurpose forestry, which often aims at uneven-aged and
mixed-species stands, stresses the need for accurate and generally applica-
ble single-tree growth functions.

The most important factors to consider in a single-tree growth function
are the size and condition of the tree itself, its competitive situation and the
site conditions. The resolution of growth models is dependent on available
data at both construction and application of the models. Natural variation
in tree growth and measurement errors at growth estimation by repeated
callipering of the trees are large and must be considered.

This motivates the introduction of the following growth model:

Yk = eβxk+Uk + Wk, (9)

where Wk is a normally distributed measurement error, whose variance
depends through the known positive function g upon vector of independent
variables xk:

Wk ∼ N(0, τ2g(xk)). (10)

Let us call the model (9) the growth model with measurement errors. The
parameter vector β of dimension p in (9), the proportion coefficient τ 2

in (10), and parameters of Uk are to be estimated. Suppose that the
distribution of the deviation Uk does not depend on k, and is Gaussian
N(µ, σ2). Obviously, the parameters of this distribution must obey the
condition of unbiasedness:

Eeβxk+Uk = eβxk .

From this relation we obtain µ = −σ2/2, which reduces by one the number
of the parameters to be estimated. Therefore, the total number of such
parameters is m = p + 2. Let us denote the vector of the parameters for
convenience by θ=(θ1, θ2, . . . , θm).

It is clear that (9) is a non-linear regression model with an error term
distributed according to the convolution of the lognormal and normal dis-
tributions (LNN). In paper IV we prove consistency and asymptotic nor-
mality for the MLE of the parameters of model (9).
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6 Maximum spacing estimation

Consider an image classification problem based on remotely sensed data.
In order for parametric classification methods such as linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) to perform
well, it is essential that the assumption of normality for the data holds or
that the deviations from it are small. For non-normal densities it is never-
theless possible to use maximum likelihood (ML) classifiers but with other
models for the class distributions. For example, in Taxt et al. (1991) mix-
tures of normal distributions are used for classification of images. Their re-
sults indicate a substantial increase in correct classification rates compared
to classification under normal densities. Mixture models are examples of
models when traditional estimation methods such as ML have a tendency
to fail. It has been observed that in remotely sensed data feature vectors
quite frequently possess bimodal or multimodal empirical distributions. If
the training sets are objectively selected the empirical distributions of this
kind will become even more common. Therefore general estimation meth-
ods for both the univariate and multivariate class distributions, which give
efficient and robust estimates also when traditional methods break down,
are of fundamental importance for parametric classification.

The maximum spacing method (MSP) is a general method of estimat-
ing continuous distributions and is an alternative to ML method. The
MSP method was proposed by Cheng and Amin (1983) (in the name
“the maximum product of spacings”), and independently by Ranneby
(1984). The argument in Cheng and Amin (1983) was that the maxi-
mum of (n + 1)−1

∑

log{(n + 1)Vi} (the Vi’s representing the spacings
Fθ(X(i+1)) − Fθ(X(i))), under the constraint

∑

Vi = 1, is obtained if and
only if all the Vi’s are equal. Note that by setting θ = θ0, the Vi’s become
identically distributed, i.e., the uniform spacings Fθ0

(X(i+1)) − Fθ0
(X(i))

should become “nearly equal”. Ranneby (1984) derived the MSP method
from an approximation of the Kullback-Leibler information (recall that the
ML method also can be derived from an approximation of the Kullback-
Leibler information). In Titterington (1985) it was observed that the MSP
method can be regarded as an ML approach based on grouped data. Hav-
ing indicated the similarities between ML and MSP, we note that there
are many situations in which the MSP method works better than the
ML method (see example below). Moreover, attractive properties such
as consistency and asymptotic efficiency of the maximum spacing estima-
tor (MSPE) closely parallel those of the maximum likelihood estimator
(MLE).

Let Fθ(x), where the unknown parameter vector θ is contained in the
parameter space Θ ⊆ R

q, denote a family of continuous univariate dis-
tribution functions. Let X1, ..., Xn be independent identically distributed
(i.i.d.) random variables with distribution function Fθ0

(x), and denote
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the corresponding order statistics by −∞ ≡ X(0) ≤ X(1) ≤ · · · ≤ X(n) ≤
X(n+1) ≡ ∞. Define

Sn(θ) =
1

n + 1

n
∑

i=0

log
{

(n + 1)
(

Fθ(X(i+1)) − Fθ(X(i))
)}

.

The function Sn(θ) can be understood as an analogue to the log-likelihood
function.

Definition 2 Any θ̂n ∈ Θ which maximizes Sn(θ) over Θ is called a

maximum spacing estimator of the unknown true parameter vector θ0.

Example 2 (Ranneby (1984)). Let

Fθ(x) =
1

2
Φ(x) +

1

2
Φ

(

x − µ

σ

)

, θ = (µ, σ) ∈ R × R
+,

where Φ(x) is the standard normal distribution function, and let X1, ..., Xn

be i.i.d. from Fθ0
(x), θ0 = (µ0, σ0) ∈ R × R+. Then the MLE of θ0 does

not exist, since the likelihood function of an observed sample x1, ..., xn

approaches infinity as, for example, µ = x1 and σ ↓ 0. However, any
approximate MSPE θ∗n ∈ Θ defined by

Sn(θ∗
n) ≥ −cn + sup

θ∈Θ

Sn(θ)

where 0 < cn and cn → 0 as n → ∞, is a consistent estimator of θ0.

General consistency theorems of (approximate) MPSEs are given in
Ekström (1996) and Shao and Hahn (1999), among others. These theorems
cover many situations in which the ML method fails.

Asymptotic normality theorems for the MSPE θ̂n, i.e., that

√
n(θ̂n − θ0)

L−→ N(0, I(θ0)
−1),

where I(θ) is the Fisher information matrix, have been given by several
authors, among them Cheng and Stephens (1989) and Shao and Hahn
(1994). The conditions used in both these papers are similar to those
given in Cramér (1946) for the MLE. Because of the form of the asymptotic

covariance matrix I(θ0)
−1, the estimator θ̂n is generally regarded as an

asymptotically efficient estimator of θ0. For results on efficiency of MSPE
see Ghosh and Jammalamadaka (2001).

In present thesis transition of maximum spacing estimator to dimen-
sions higher than 1 is investigated. Since there is no natural order relation
in R

d when d > 1 the approach has to be modified. Essentially, there are
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two different possibilities for the transition, the geometric and probabilis-
tic counterparts to the univariate case. If we to each observation attach
its Dirichlet cell, the geometrical correspondence is obtained. The prob-
abilistic counterpart would be to use the nearest neighbor balls. Let us
consider these two possibilities.

6.1 Dirichlet tesselation

Let ξ1, ξ2, . . . , ξn be i.i.d. d-dimensional random vectors with an absolutely
continuous distribution P0 with density function g(x) and suppose that we
assign a model with density functions {f(x,θ),θ ∈ Θ}, where Θ ⊂ R

q.
Consider the following definitions. Given an open set Ω ⊂ R

d, the set
{Vi}n

i=1 is called a tesselation of Ω if Vi∩Vj = � for i 6= j and ∪n
i=1V i = Ω.

Let | · | denote the Euclidean norm on R
d. Given a set of points {ξi}n

i=1

belonging to Ω, the Dirichlet cell V (ξi) corresponding to the point ξi is
defined by

V (ξi) = {y ∈ Ω : |y − ξi| ≤ |y − ξj |, for j = 1, . . . , n, j 6= i}.

The probabilities of Dirichlet cells, of course, always add up to one. There-
fore it is possible to consider the following alternative definition of the
spacing function based on the Dirichlet tesselation. Let

vi(n,θ) = nPθ(V (ξi)).

Sv
n(θ) =

1

n

∑

log(vi(n,θ)).

The MSPE of θ is defined as the maximizer of Sv
n(θ).

6.2 Nearest neighbor balls

Another way to define the spacing function in dimensions higher than 1 is
through the nearest neighbor balls.

Let
B(ξi, r) = {y : |ξi − y| ≤ r}

denote the ball of radius r with center at ξi and let

Rn(i) = min
j 6=i

|ξi − ξj |.

The latter quantity is called the nearest neighbor distance for ξi. Define,

zi(n,θ) = nPθ(B(ξi, Rn(i))).
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A natural generalization of the univariate definition of the spacing func-
tion is to define it in multivariate case as

1

n

n
∑

i=1

log zi(n,θ).

However, this approach has serious shortcomings, mainly that under some
probability measures the sum of the probabilities of the nearest neighbor
balls may become too large (as for instance when Pθ has the same location
as P0 but much smaller variance). As a consequence there is no guarantee
that the estimator will be consistent. To overcome this problem, the prob-
abilities for the nearest neighbor balls when the sum of their probabilities
exceeds one, have to be normalized. When the sum is less than one the
remaining probability enters the spacing function in the same way as the
probabilities for the nearest neighbor balls. The MSPE of θ is then defined
as the maximizer of Sb

n(θ), where

Sb
n(θ) =

1

n

n
∑

i=1

log(zi(n,θ))

+

(

1

n
log(1 − 1

n

n
∑

i=1

zi(n,θ))

)

I(
1

n

n
∑

i=1

zi(n,θ) ≤ 1)

−I(
1

n

n
∑

i=1

zi(n,θ) > 1) log(
1

n

n
∑

i=1

zi(n,θ)),

where I(A) is the indicator function of the set A.
In paper V we investigate the MSPE based on Dirichlet tesselation.

We prove the consistency of such estimator in R
1 and conjecture that

the consistency holds in higher dimensions. The simulation studies we
conducted in R

2 support our assumption of consistency and also that of
asymptotic efficiency. We also compare the efficiency of the MSPE based
on Dirichlet tesselation with that of the MSPE based on nearest neighbor
balls and note that the former is much closer to being efficient.

7 Random search optimization

Optimization by the random search is the method we used in papers IV
and V in order to find the maxima of complicated functions in multi-
dimensional spaces. This methods and its modifications are extensively
used in nondifferentiable problems, or when computation of derivatives is
prohibitive due to its complexity. The main idea of random search opti-
mization is very simple and is essentially the restatement of the “trial-and-
error” method. Suppose, we seek the maximum of the object function F in
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the parameter space P. The value of F is calculated in a reasonably chosen
starting point P0 ∈ P. As is usual with optimization problems, the good
choice of the starting point significantly speeds up the convergence. Then
a random (according to some specified distribution) step in the parameter
space is made, producing another point P1. If P1 6∈ P another step is
made from P0, otherwise F (P1) is compared to F (P0). If F (P1) > F (P0),
the next step is made from P1. The next step (also random) can differ
from the previous one, making an algorithm adaptive, i.e., dependent on
the previous results. The algorithm continues until some sort of stability
is obtained. Numerous modifications of this simple idea, aimed to speed
up the convergence, exist (see, for example, Lee and Rhinehart (1998) and
Lei (2002)).

Obviously, in order for the random optimization procedure to converge
in finite time, it is necessary to impose some inequality-type restrictions
(i.e., bounds) on the parameters.

In papers IV and V we chose the random steps as follows. The first
steps in the parameter space were one-dimensional Gaussian for each pa-
rameter. After several thousands Gaussian steps the value of the MLE
stabilized. One could suppose that the obtained MLE was close to the
real one (given the restrictions imposed on parameter values). Then the
uniform distribution was employed to search in the m-dimensional cubic
neighborhood of the current MLE (m here is the size of the parameter
vector). The range of the uniform distribution was gradually narrowed,
until the the required accuracy was achieved. All the computations were
carried out using the resources of High Performance Computing Center
North (HPC2N).

8 Summary of paper I

In this paper the problem of estimating the spatial distribution of reindeer
(Rangifer tarandus) from incomplete survey is considered. The standard
model used to describe the presence/absence of species is the logistic re-
gression. In order to obtain a better fit of the regression function one
must also consider the intrinsic spatial autocorrelation arising in gregari-
ous populations. This can be achieved by including extra covariates, which
describe the spatial covariation, explicitly in the model. The logistic model
with such spatial covariates included is known as autologistic model. Often
it is the case that the ground survey is incomplete, i.e., it has gaps which
do not allow us to calculate the spatial covariation. In such situations the
Gibbs sampler can be applied to estimate presence/absence of the species
at unsurveyed plots. When it is done, the autologistic regression function
is fitted in the usual way. We consider the question how much the results
of the logistic regression can be improved by simulating the unsurveyed
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data by the Gibbs sampler. Various choices of training sets for obtaining
the initial estimates by logistic regression are also studied.

The results indicate that the Gibbs sampler helped to improve the
accuracy of prediction by 2-3% on average. Another conclusion that we
have drawn was that the size of the training set was of much less impor-
tance compared to its positioning. The best results were obtained when
the training set was connected, and chosen perpendicular to the elevation
curves.

9 Summary of paper II

In paper II we consider a problem of automatic detection of tracks in
aerial photos or satellite images. We adopt a Bayesian approach and base
our inference on an apriori knowledge of the structure of tracks. The
probability of a pixel to belong to a track depends on how the pixel gray
level differs from the gray levels of pixels in the neighborhood and on
additional prior information about the shape of the tracks. The Gibbs
sampler is used to construct the most probable (according to the posterior
distribution) configuration of the tracks. We apply the algorithm to aerial
photos with resolution of 1 meter. Even for detection of tracks of width
which is comparable with or smaller than the resolution, positive results are
achieved. We study several examples of varying complexity, and suggest
how to construct the Gibbs sampler (i.e., the prior distribution) for each
particular case.

10 Summary of paper III

In this paper we analyze how such MCMC methods as the Iterated Con-
ditional Mode (ICM) and the Gibbs sampler can be applied for improving
the classification of multispectral images by conventional methods. The
paper describes a simulation study which was performed as follows. First
a “true” image was simulated from the ground truth. This “true” image
was degraded by autocorrelated noise and then classified into three classes
by noncontextual methods. The nonparametric rule called k-NN (Fix and
Hodges (1951)) for k = 1 and 3, as well as the quadratic discriminant anal-
ysis (QDA) were considered. The outputs of these algorithms were used as
the inputs for the ICM and the Gibbs sampler, which reclassify the map
according to the posterior distribution (with Potts prior). It is shown that
the use of the Gibbs sampler for reclassification is particularly justified if
the initial classification performed poorly. A significant improvement in
total misclassification rates is obtained.
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11 Summary of paper IV

The forest growth model with measurement errors is introduced. The
model is an exponential regression function with a heteroscedastic error
term which is distributed as a convolution of normal and lognormal dis-
tributions. The model takes into account the fact that the measurement
error is affected by the size of the tree. The maximum likelihood estimates
(MLE) of the parameters of this model are proven to be consistent and
asymptotically normally distributed. The model is applied to the real data
from Swedish National Forest Inventory and the MLE of the parameters
are calculated.

12 Summary of paper V

A maximum spacing (MSP) estimate based on Dirichlet tesselation is stud-
ied. For univariate observations consistency of such estimate is proved.
For multivariate observations the asymptotic properties of a maximum
spacing estimate based on Dirichlet tesselation are investigated by a sim-
ulation study. The results complement those obtained in Ranneby and
Jammalamadaka (2002) in the following way. Whereas in Ranneby and
Jammalamadaka (2002) the MSP estimation is extended to multivariate
observations by means of spacings which are the nearest neighbor balls, in
our paper we take an alternative approach to the same problem. By means
of the simulation study we directly compare the asymptotic properties of
the MSP estimate based on nearest neighbor balls with those of the MSP
estimate based on the Dirichlet tesselation. The results indicate that the
variance of the estimate is lower when spacings are based on the Dirichlet
tesselation.
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