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Marker-trait association
analyses revealed major novel
QTLs for grain yield and related
traits in durum wheat
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Eva Johansson2, Teklehaimanot Hailesilassie1,
Cecilia Hammenhag2, Faris Hailu5 and Mulatu Geleta2

1Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia, 2Department of Plant
Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden, 3Sinana Agricultural
Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia, 4Director General,
Bio and Emerging Technology Institute (BETin), Addis Ababa, Ethiopia, 5Department of Biology and
Biotechnology, Wollo University, Dessie, Ethiopia
The growing global demand for wheat for food is rising due to the influence of

population growth and climate change. The dissection of complex traits by

employing a genome-wide association study (GWAS) allows the identification

of DNA markers associated with complex traits to improve the productivity of

crops. We used GWAS with 10,045 single nucleotide polymorphism (SNP)

markers to search for genomic regions associated with grain yield and

related traits based on diverse panels of Ethiopian durum wheat. In Ethiopia,

multi-environment trials of the genotypes were carried out at five locations.

The genotyping was conducted using the 25k Illumina Wheat SNP array to

explore population structure, linkage disequilibrium (LD), and marker-trait

associations (MTAs). For GWAS, the multi-locus Fixed and Random Model

Circulating Probability Unification (FarmCPU) model was applied. Broad-

sense heritability estimates were high, ranging from 0.63 (for grain yield) to

0.97 (for thousand-kernel weight). The population structure based on principal

component analysis, and model-based cluster analysis revealed two

genetically distinct clusters with limited admixtures. The LD among SNPs

declined within the range of 2.02–10.04 Mbp with an average of 4.28 Mbp.

The GWAS scan based on the mean performance of the genotypes across the

environments identified 44 significant MTAs across the chromosomes.

Twenty-six of these MTAs are novel, whereas the remaining 18 were

previously reported and confirmed in this study. We also identified candidate

genes for the novel loci potentially regulating the traits. Hence, this study

highlights the significance of the Ethiopian durum wheat gene pool for

improving durum wheat globally. Furthermore, a breeding strategy focusing

on accumulating favorable alleles at these loci could improve durum wheat

production in the East African highlands and elsewhere.
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1 Introduction

Durum wheat (Triticum turgidum, L. var. durum Desf.) is a

staple cereal crop produced to make pasta, bread, and other

traditional food items (Sall et al., 2019; Ceglar et al., 2021).

Durum wheat accounts for approximately 8% of global wheat

production (Sall et al., 2019), and most of it (75%) is produced in

the Mediterranean region (Xynias et al., 2020). The world’s

largest producers are Turkey and Canada, while Ethiopia is the

largest producer in Sub-Saharan Africa (SSA). Durum wheat was

domesticated around 10,000 years ago in the Fertile Crescent

(Özkan et al., 2002; Soriano et al., 2018; Ceglar et al., 2021) and

has since then been a vital source of energy, minerals, and

bioactive compounds in human nutrition (Johansson et al.,

2020a). The durum wheat is an amphidiploid species

containing an AABB genome, and its genome size is nearly 12

Gb (Maccaferri et al., 2019).

The current development of advanced DNA sequencing

methods, functional genomic tools, and availability of different

DNA chip technology has highly facilitated the genetic

dissection of multi-genic traits of food crops (Collard and

Mackill, 2008; Al-Khayri et al., 2016; Geleta and Ortiz, 2016).

Association mapping (AM) has been widely used to dissect the

genetic architecture behind traits like grain yield, host plant

resistance to pathogens, drought and salinity tolerance,

phenology, and quality traits (Maccaferri et al., 2010;

Tuberosa, 2012; Canè et al., 2014; Turki et al., 2015; Giraldo

et al., 2016; Mengistu et al., 2016; Kidane et al., 2019; Mérida-

Garcıá et al., 2019; Mérida-Garcıá et al., 2020). Moreover,

genome-wide association studies (GWAS) have been

successfully used to map genetic loci and dissect the genomic

regions underlying several vital traits in important food crops,

such as barley (Bellucci et al., 2017; Borrego-Benjumea et al.,

2021), and bread wheat (Li et al., 2019; Gao et al., 2021;

Mekonnen et al., 2021).

In wheat, GWAS has been successfully applied to identify

and dissect QTL associated with grain yield (Li et al., 2019; Gao

et al., 2021), host plant resistance to pathogens (Alemu et al.,

2021a; Alemui et al., 2021; Mekonnen et al., 2021), drought

tolerance (Bhatta et al., 2018; Mathew et al., 2019), root

architecture (Alemu et al., 2021b), phenology (Mekonnen

et al., 2021), adaptation to salinity (Quamruzzaman et al.,

2021), and end-use quality traits (Chen et al., 2019; Talini

et al., 2020). However, in durum wheat, limited GWAS results

have been reported across traits of interest, although some

results are present for grain yield (Wang et al., 2019;

Anuarbek et al., 2020), host plant resistance to pathogens (Liu

et al., 2017b; Aoun et al., 2021), drought tolerance (Wang et al.,

2019), root system architecture (Maccaferri et al., 2016; Alemu

et al., 2021b), osmotic adjustment (Condorell et al., 2022), and

phenology and quality traits (Fiedler et al., 2017). Furthermore,

GWAS results reported on Ethiopian durum wheat cultivars and
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landraces are insufficient. Increased genomic research is needed

to improve durum wheat production in Ethiopia by utilizing

genomic-assisted breeding approaches.

Wheat landraces can be seen as an essential germplasm

resource, with the potential to be utilized as a reservoir of crop

diversity that harbors significant novel loci associated with

agronomic, phenological, and end-use quality traits (Johansson

et al., 2021). Landraces and their wild relatives have served as

sources of valuable genes to improve modern cultivars for

adaptation to diverse environments, grain yield, end-use

quality, host plant resistance to the pathogen, and abiotic

stress tolerance (Maccaferri et al., 2019; Johansson et al.,

2020b; Sansaloni et al., 2020). Several reports revealed that

Ethiopian durum wheat has high genetic diversity to be

explored in the search for essential novel and valuable genes

for improvements of traits such as grain yield, nutritional

quality, host plant resistance to pathogens, and drought

tolerance (Mengistu et al., 2016; Kabbaj et al., 2017; Kidane

et al., 2019; Alemu et al., 2020a). Hence, understanding the

genetic basis of these important traits using recent genomic-

based research will facilitate the use of Ethiopian germplasm in

an improvement program to maintain a food-secure future in

the region.

This study aimed to use GWAS to define genomic regions in

Ethiopian durum wheat associated with grain yield and related

traits. Furthermore, population structure and linkage

disequilibrium were evaluated for precise identification of the

genetic basis of valuable genomic regions associated with grain

yield and important agronomic traits.
2 Materials and methods

2.1 Germplasm

The present study used 420 Ethiopian durum wheat

landraces and cultivars. To accommodate the extensive

diversity of the Ethiopian durum wheat gene pool, 385

landraces were selected from different geographical regions of

Ethiopia, while 35 were crossbred cultivars. Supplementary

Table 1 provides information on these landraces and cultivars.

For simplicity, the landraces and cultivars will be designated as

genotypes hereafter.
2.2 Description of test environment

The performance of the genotypes was evaluated across five

locations in Ethiopia, namely, Akaki (AK; 09˚53’ 48” N/39˚49’

16” E), Chefe Donsa (CD; 08˚58’ 57” N/39˚09’ 13” E), Holeta

(HO; 09°01’ 15” N/38°28´ 26” E), Kulumsa (KU; 08°01’ 11” N/

39°09’ 37” E) and Sinana (SN; 07°06´ 58” N/40°13´ 38” E)
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during the 2019 ˗ 2020 main crop-growing season. The testing

locations represent the country’s major and most suitable durum

wheat growing environments. The soil texture of each site is

characterized as heavy clay for Akaki and Chefe Donsa and clay

for Holeta, Kulumsa, and Sinana. The test sites are classified into

ME (Mega environment)2:SW(Spring Wheat) high rainfall areas

that receive more than 500 mm of rainfall during the crop

growing cycle as defined by CIMMYT’s Wheat Breeding

Program (Rajaram et al., 1994). Among the five test sites,

Sinana, Kulumsa, and Holeta have been used by CIMMYT’s

wheat breeding program targeting high potential environments

in the highlands of East Africa. The Agro-ecology at the Akaki

and Chefe Donsa sites are also similar to those at the other three

test sites and are considered high-potential sites. During the

crop-growing season, the mean monthly maximum and

minimum temperature of the Sinana site ranged from 20.8°C

to 23.9°C and 8.4°C to 9.2°C, respectively, with total rainfall of

810 mm (Supplementary Table 2). The Holeta site received a

total rainfall of 852 mm, with the mean annual minimum and

maximum temperature of 10°C and 24°C, respectively

(Supplementary Table 2). The Chefe Donsa site received mean

monthly minimum and maximum temperatures ranging from

9.4–11.8°C and 20.3–24.2°C, with a total rainfall of 870.5 mm.

Whereas, the Akaki site received mean monthly minimum and

maximum temperatures ranging from 9.89–13.82°C and 24.85–

26.91°C, respectively, with a total rainfall amount of 711.5 mm.

Kulumsa site received a total rainfall of 700 mm, with a mean

monthly minimum temperature of 11°C and a mean monthly

maximum temperature of 23°C.
2.3 Field experimental design

The experiment was laid out using an alpha lattice design

with two replications containing 21 incomplete blocks with a

block size of 20, according to Patterson and Williams (1976).

The landraces and cultivars were randomly assigned and planted

on a plot size of 1 m2 with 2.5 m x 0.4 m (two rows with 20 cm

spacing). The space between the plots was 20 cm. A seed rate of

150 kg ha−1 and fertilizer rate of 50 kg N ha-1 and 100 kg of P2O5

ha-1 was applied to each plot. In order to maintain genotype

uniformity (since the genotypes were mostly landraces with

possible seed admixture), the genotypes were grown on

different plots for two consecutive crop growing seasons

(2017-2018) at Sinana agricultural research center, and

individual plants that appeared to differ in any of the clearly

visible phenotypic traits were removed.
2.4 Evaluation of phenotypic traits

In this study, phenotyping was conducted by applying the

previously described methodology for evaluating wheat genetic
Frontiers in Plant Science 03
resources (IBPGR, 1985). The traits measured were phenology

(days to heading, days to physiological maturity, and grain filling

period), plant architecture (plant height, spike length, and

number of effective tillers per plant), grain yield, and grain

yield-related traits (number of spikelets per spike, and thousand

kernel weight).
2.5 Statistical analysis of the
phenotypic data

Before further analysis, data were evaluated by the Shapiro–

Wilk test to assess if they fit into the normal distribution.

Furthermore, based on the results from the normality test, the

homogeneity test was performed for the scored data in the

experiment as described in Levene (1960). The R statistical

software (R Development Core team, 2021) was used for

computing descriptive statistics (mean, range, standard

deviation), coefficient of variation, analysis of variance

(ANOVA), correlation among traits, and broad-sense

heritability. The linear mixed model (LMM) fitted by the

Restricted/Estimated Maximum Likelihood method [REML,

Corbeil and Searle (1976)] in R package “lme4” (Bates et al.,

2015) was used to estimate the variance components of scored

traits. To perform ANOVA for each test environment, the

genotypes and blocks were considered fixed and random

effects, respectively. The response of the ith genotype in the jth

incomplete block with the lth replication of each environment for

a particular trait was described as:

Yijl¼μ + tiþbjþg l jð Þþxijl (1)

where Yijl is the phenotypic response of the i
th genotype in lth

incomplete block within jth replication, μ is the overall mean, ti is
the fixed effect of genotype i, bj is the random effect of the jth

replicate, gl is the random effect of the jth incomplete block

nested in the lth replication, and xijl is the residual error.
The combined ANOVA across environments inference was

computed for all the response variables as follows:

Yijlk =   µ   +ti + bl + gj + Ek + bglj + g Ejk + tEik + xijlk               2ð Þ
where Yijlk is the observed phenotypic trait for ith genotype

in lth incomplete block within jth replication at the kth

environment, μ is the overall mean, ti is the fixed effect of

genotype i, bl is the random effect of jth replication, gj is the

random effect of the lth incomplete block within jth replication,

Ek is the random effect of environment k, bglj is random effect of

incomplete block l nested in replication j, gEjk is random effect

of replication j in test environment k, tEik is random effect of

interaction between genotype i and environment k, and xijlk is a
random residual effect. For the sake of simplicity, we assumed

that all the underlying random effects residuals are normally

distributed with zero mean and are independent homoscedastic.
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The best linear unbiased estimates (BLUEs) of measured

traits for each genotype from each environment were obtained

using META R software (Alvarado et al., 2020). The estimated

means of BLUEs was used to compute the Pearson correlation

coefficient (r) by the “cor. test” function in the R (R

Development Core team, 2021) and GWAS analysis. The

estimates of broad-sense heritability (H2) were computed from

pooled ANOVA across environments (Gonçalves-Vidigal et al.,

2008) as:

H2 =
s  2g

½s  2g +(s  2gl =l) + s  2e =lrð Þ�                           3ð Þ

where s 2g is genotypic variance, s  2gl is genotype by

environment interaction variance, s  2e is environmental

variance, l is the number of environments, and r is the

number of replications.
2.6 DNA extraction, genotyping, and
filtering of SNP markers

A single spike representing each genotype was collected during

field phenotyping for genotyping. Five healthy seeds from each

spike were taken to represent each genotype and were planted in 3 L

pots in a greenhouse at the Swedish University of Agricultural

Science (SLU), Alnarp, Sweden. A total of ten 6 mm leaf discs

sampled from five two-week-old seedlings of each genotype were

collected in each well of a 96-deep well plate and freeze-dried using

the CoolSafe ScanVAC Freeze Dryer according to the instructions

provided by Trait Genetics. The freeze-dried samples in 96-well

deep well plates were sent to TraitGenetics (GmbH, Gatersleben,

Germany) for DNA extraction and subsequent genotyping. A

standard cetyltrimethylammonium bromide (CTAB) protocol was

used to extract DNA from the leaf samples in TraitGenetics’ lab.

The 420 genotypes were genotyped using an Illumina Infinium 25k

wheat single nucleotide polymorphism (SNP) array following the

manufacturer´s protocol. The details of the SNP array can be found

at https://www.traitgenetics.com/index.php/service-products. Based

on a specific durum wheat cluster file developed by TraitGenetics

that differentiates durum wheat from bread wheat, markers

accurately scored for the A and B genomes were recorded.

Several criteria were used to filter the genotypic data

obtained before further analysis. TASSEL 5.2.80 software

(Bradbury et al., 2007) was used to remove SNP loci with

missing data above 5% or with minor allele frequency (MAF)

below 5% (including monomorphic loci). Further filtering of the

remaining SNP loci was conducted based on the level of

observed heterozygosity (Ho), and loci with Ho greater than

0.01 were excluded. These filtering steps resulted in 10,045 SNPs

that were used for data analyses. The evaluation of these SNP

loci showed that each of the 420 samples had less than 1%
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missing data, and hence no genotype was excluded from the

data analyses.
2.7 Population structure and linkage
disequilibrium (LD) analysis

The number of subgroups among the 420 genotypes was

inferred by principal component analysis (PCA) and model-based

clustering methods, which were computed by Genome Association

and Integrated Prediction Tool (GAPIT) 3.0 (Wang and Zhang,

2021) and STRUCTURE 2.3.4. software (Pritchard et al., 2000;

Falush et al., 2007), respectively. A Bayesian approach (MCMC:

Markov Chain Monte Carlo) that assumes an ancestry model of

ADMIXTURE and correlated allele frequencies among the

subgroups was used for model-based cluster analysis. The length

of the burn-in period was adjusted to 50,000, followed by 100,000

MCMC iterations for subgroups (K) ranging from one to ten. Ten

independent runs were carried out for each K. The STRUCTURE

results were visualized using STRUCTURE Harvester (Earl and

vonHoldt, 2012). The number of best K was inferred using the delta

K method described in Evanno et al. (2005). The optimum K value

bar plot was drawn based on CLUMPAK online software

(Kopelman et al., 2015).

Information on the pattern of linkage disequilibrium (LD)

within a genetic material of interest is necessary to determine the

marker density required for a genome-wide scan (Siol et al., 2017).

Accordingly, LD was computed using TASSEL version 5.2.8

(Bradbury et al., 2007). The pairwise LD (squared allele

frequency, r2) for pairs of SNP markers was computed according

to Weir (1997). The intersection of the fitted curve with the cut-off

threshold was considered the mean r2 value for each chromosome

(Breseghello and Sorrells, 2006b; Liu et al., 2017c). The mean r2

value of each chromosome was computed and plotted against the

chromosome’s physical distance. The physical distance at which the

r2 value dropped to half its average maximum value was considered

the LD decay rate (Huang et al., 2010). The r2 = 0.3 (p<0.01) was

considered as a cut-off point to represent a limit of QTL between

pairs of markers as indicated in previous studies for Ethiopian

durum wheat panels (Liu et al., 2017c; Alemu et al., 2021b).
2.8 Identification of marker trait
association

GWAS was conducted using best linear unbiased estimates

(BLUEs) for nine phenotypic traits and 10,045 SNP markers to

identify marker-trait association (MTA). The BLUEs for grain

yield, spike length, and grain-filling period were calculated by

considering days to heading (DTH) as a covariate in order to

control the effect of heading time, as suggested in previous

studies (Sabadin et al., 2012; Tuberosa, 2012). The analysis was
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performed by employing a multi-locus-based method, fixed and

random model Circulating Probability Unification [FarmCPU,

Liu et al. (2016)] model selection algorithm implemented in

GAPIT 3 R package (Lipka et al., 2012; Tang et al., 2016; Wang

and Zhang, 2021). The FarmCPU model algorithm eliminates

potential confounding factors by employing the fixed and

random effect models iteratively. This was done to overcome

the overfitting model influences of the stepwise regression and to

control spurious MTA caused by population structure and

family relatedness. GAPIT 3 was also used to visualize the

Manhattan and Quantile-quantile (QQ)-plots. The QQ-plot

fits the model to account for the population structure.

The stringent false-positive discovery rate [FDR, p< 0.01

(Benjamini and Hochberg, 1995)] and Bonferroni-corrected

threshold of (–log10 (0.05/n) = 5.30 was used, where n is the

total numbers of SNPs) to declare a significant MTA between a

marker and phenotypic trait. All MTAs above the threshold levels

were rated as significant. The percentage of phenotypic variance

explained (PVE) by individual MTA (Garcia et al., 2019) and a

marker-based VanRaden kinship (K) matrix (VanRaden, 2008) for

the genotypes of interest was also generated in R/GAPIT 3. It was

assumed that an identified QTL is stable in the genomic region

when significant MTA has appeared in two or more test locations,

and the additive effects were concordant.
2.9 Identification of putative novel MTAs
and associated candidate genes

The novelty of significant MTAs and their potential

associated genes were determined by comparative analyses

with previously published reports using different Triticum

databases such as GrainGene, T3/wheat, and Wheat URGI

(Alaux et al., 2018). The lists of different genes and functions

were downloaded from the NCBI database (https://ftp.ncbi.nlm.

nih.gov/genomes/all/GCA/900/231/445/GCA_900231445.1_

Svevo.v1/) to identify genes related to significant MTAs. The

nucleotide position extending from 1-5 cM up and downstream

from the SNP position was used for searching the potential

candidate genes, as previously reported for wheat (Breseghello

and Sorrells, 2006a). The genes associated with the significant

MTAs were obtained from the durum wheat (Triticum turgidum

(Svevo.v1) reference genome) (Maccaferri et al., 2019).
3 Results

3.1 Phenotypic mean performance
of genotypes

Descriptive statistics, frequency distribution, and boxplots

clearly showed a wide range of variation for all the traits

evaluated (Table 1 and Figure 1). The mean number of days for
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days to heading, days to physiological maturity, and grain filling

period over the combined environments were 72.6, 136, and 63.4,

respectively (Table 1). The mean grain yield was 6.7 t ha-1, while

the mean thousand kernel weight was 40.9 g. On average, 17.5

spikelets per spike were recorded across the environments

(Table 1). The highest mean grain yield (8.4 t ha-1) was

observed at Chefe Donsa, followed by Sinana (8.2 t ha-1),

whereas the lowest mean grain yield was recorded at Holeta

(4.4 t ha-1) (Table 1). The highest mean performance of the

genotypes for the thousand kernel weight (42.7 g) was attained at

Chefe Donsa, whereas the lowest was found at Akaki (35.2 g). The

pooled ANOVA over test environments indicated a significant

(p<0.01) impact of genotype, environment, and genotype by

environment interactions on all traits evaluated (Supplementary

Table 3). Furthermore, significant effects of replications and

blocks were noted for traits, most likely due to variation within

the field.
3.2 Variance components estimation,
broad-sense heritability, and relationship
between traits

The estimates of genotypic variance (s 2
g ) and genotypic

coefficient of variation (GCV) for the thousand kernel weight

(TKW) and grain-filling period (GFP) were high. The lowest

s 2
g and GCV were obtained for grain yield (GYD) and the

number of effective tillers (NET; Supplementary Table 4). The

highest values of variance due to genotype by environment

interaction (s 2
gxe) and variance due to environments (s 2

gxe) were

recorded for plant height (PHT). In contrast, the number of

effective tillers per plant (NET) showed the lowest values of

both variances. The phenotypic coefficient of variation (PCV)

ranged from 24.1 for days to maturity (DTM) to 137.5 for

TKW. Most of the phenotypic traits evaluated in the present

study showed high heritability (Supplementary Table 4). The

highest broad sense heritability values were recorded for TKW

(H2 = 0.97) and GFP (H2 = 0.98), indicating that these traits are

highly heritable.

The Pearson correlation coefficients computed based on the

BLUE mean values were positively significant (p< 0.01) for DTH

with DTM, SPP, SPL, PHT and NET, for SPP with SPL, NET and

GYD, and for SPL with PHT and NET (Figure 2). GYD was

positively correlated with SPP (r = 0.20), and TKW (r = 0.24).

Nevertheless, GYD had a negative correlation with DTH (r = -0.22)

and PHT (r = -0.38) (Figure 2). DTH had a negative correlation

with GFP and a positive correlation with DTM and SPP.
3.3 SNP markers distribution and density

In total, the 420 genotypes were genotyped with 24,145 SNP

markers. Filtering of the genotypic data based on the number of
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missing values, observed heterozygosity, and minor allele

frequency resulted in 10,045 high quality polymorphic SNPs

used for data analyses. Of these 10,045 SNPs, 4,807 (48%) and

5,238 (52%) were distributed on the A and B genomes,

respectively (Table 2). The number of these SNPs per

chromosome with regard to the two genomes ranged from 415

on chromosome 4B to 917 on chromosome 5B (Table 2).

The marker density was 1.01, 0.96, and 0.98 Mbp per marker

for the A, B, and whole genomes, respectively. The SNP markers

used in this study covered a total size of 9.86 Gbps, with

chromosomes 1A and 2B having the smallest (584.2 Mbp) and

largest (789.4 Mbp) regions (Table 2 and Figure 3).
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3.4 Linkage disequilibrium

Among all possible pairs of SNPs on each chromosome,

490,775 pairs were found in LD (Table 3). Of these, 97,386

(19.8%) were found to be significant marker pairs with r2 ≥

0.3 (p< 0.01; Table 3), which were therefore used to assess the

MTAs. The significant marker pairs on each chromosome

accounted for 12.1% (r2 = 0.12 for chromosome 7A) to 26.2%

(r2 = 0.211 for chromosome 3B) of all marker pairs on the

corresponding chromosomes (Table 3). The sudden LD decay

among SNP pairs occurred within the range of 2.02–10.04

Mbp with an average of 4.26 Mbp (Supplementary Table 5;
TABLE 1 Descriptive statistics for days to heading (DTH, in days), days to physiological maturity (DTM, in days), grain filling period (GFP, in days),
plant height (PHT, in cm), spike length (SPL, in cm), grain yield (GYD, in t ha-1), thousand kernel weight (TKW, in g), and the number of spikelets
per spike (SPP, in counts) of 420 durum wheat genotypes grown in five test sites (ENV) in Ethiopia.

Traits ENV Mean Median Range SE z Traits ENV Mean Median Range SE

DTH

Akaki 77.3 78 59−86 0.19

SPL

Akaki 6.24 6 4−12 0.04

Chefe Donsa 74.8 76 68−84 0.14 Chefe Donsa 7.69 8 5−14 0.05

Holeta 74.9 76 64−84 0.14 Holeta 8.16 8 5−13 0.06

Kulumsa 68.0 68 59−77 0.13 Kulumsa 8.1 8 5−12 0.05

Sinana 64.1 68 59−76 0.13 Sinana 9.48 10 4−14 0.07

Pooled ENV 72.6 73 59−86 0.08 Pooled ENV 7.94 8 4−14 0.03

DTM

Akaki 138.5 137 133−153 0.12

GYD

Akaki 4.9 4.9 1.2−9.9 0.05

Chefe Donsa 137.3 138 131−150 0.09 Chefe Donsa 8.4 8.5 1.6−13 0.06

Holeta 132.6 133 127−147 0.09 Holeta 4.36 4.3 2.7−11 0.03

Kulumsa 133.6 134 127−145 0.09 Kulumsa 7.78 7.8 1.8−13.5 0.06

Sinana 138.1 138 130−150 0.08 Sinana 8.2 8.1 2.9−14 0.07

Pooled ENV 136.0 136 127−153 0.06 Pooled ENV 6.74 6.7 1.2−14 0.03

GFP

Akaki 61.3 60 48−81 0.17

TKW

Akaki 35.25 35 20−51 0.16

Chefe Donsa 62.5 62 51−77 0.13 Chefe Donsa 42.69 42 27−60 0.18

Holeta 57.7 57 48−75 0.15 Holeta 42.21 42 29−60 0.17

Kulumsa 65.6 65 53−80 0.16 Kulumsa 42.25 42 26−66 0.20

Sinana 70.0 70 58−85 0.14 Sinana 42.05 41.5 21−57 0.18

Pooled ENV 63.4 63 48−85 0.09 Pooled ENV 40.89 41 20−66 0.09

PHT

Akaki 69.5 69 43−111 0.31

SPP

Akaki 15.84 16 9−23 0.07

Chefe Donsa 100.0 100 70−133 0.33 Chefe Donsa 18.14 18 13−23 0.06

Holeta 93.4 94 57−129 0.40 Holeta 14.58 15 10−23 0.05

Kulumsa 101.2 102 58−140 0.37 Kulumsa 18.14 18 13−24 0.06

Sinana 117.0 117 65−156 0.40 Sinana 20.88 21 14−26 0.06

Pooled ENV 96.3 98 43−156 0.28 Pooled ENV 17.52 18 9−26 0.04
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Supplementary Figure 1). The fastest decrease of LD at cut-off

(r2 = 0.3) was observed on chromosome 7A. The r2 values

of marker pairs progressively declined as the physical

distance between them increased on each chromosome

(Supplementary Figure 1).
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3.5 Principal component analysis,
population structure, and kinship

The PCA scatter plot explained 92% (PC1 = 78.8% and PC2 =

13.2%) of the entire variation in the data set and grouped the
A B

D E F

G IH

C

J K L

FIGURE 1

Frequency distribution and boxplots of DTH (A, D), DTM (B, E), SPL (C, F), SPP (G, J), TKW (H, K), and GYD (I, L).
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genotypes into two subpopulations (Figure 4A). Subpopulation 1

contained almost all modern cultivars, and subpopulation two

included all landraces by showing clear grouping based on genetic

background (Figures 4A, B).

A model-based Bayesian cluster analysis using STRUCTURE

revealed that the optimal uppermost clear true DK value was

obtained at best when K = 2, suggesting the 420 genotypes form

two subpopulations (Figure 4D). Based on this clustering, cluster-1

comprised 348 landraces and one cultivar (85.5% of the genotype),

and cluster-2 comprised 33 cultivars and 28 landraces (14.5% of the
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genotype). Analysis of admixture and purity using the

STRUCTURE based on the Q value score (Q< 0.80 = admixture,

and Q > 0.80 = pure genotypes) revealed that only 17 individuals

(16 landraces and 1 cultivar) were classified as admixtures.

The STRUCTURE analysis revealed that 27 landraces were

grouped with cultivars, and of these, three landraces (G242, G243,

and G368) had a Q value of 1, which indicates 100% fitting the

grouping with modern cultivars. Furthermore, one modern cultivar

(G405), which was derived from related to landraces (according to

their pedigree information), was grouped with landraces. The allelic
TABLE 2 The distribution of the 10,045 SNP markers across the entire durum wheat genome.

CHRz NSPChr GCR (bp) SGRC
(Mbp)

CHR NSPChr ROGC (bp) SGRC (Mbp)

1A 757 1104472−585259074 584.2 1B 849 313555−681099620 680.8

2A 728 295475−774813964 774.5 2B 869 406084−789416853 789.4

3A 610 304055−746380464 746.1 3B 806 304239−746380464 746.1

4A 520 698412−736473645 735.8 4B 415 42526−674744571 674.7

5A 746 27537−667286510 667.3 5B 917 2555603−701346725 698.8

6A 643 591650−615260837 614.7 6B 753 2052283−698554772 696.5

7A 803 171878−727023089 726.9 7B 629 47368−721753586 721.7

Aa 4807 na 4849.5 Bb 5238 na 5008
z CHR, chromosome; aA, A genome; bB, B genome; NSPChr, Number of SNPs per chromosome; GCR, Genome coverage range; SGRC, Size of genomic region(s) covered; na, Not
applicable.
FIGURE 2

Computed correlation plots between pairs of phenotypic traits based on the best linear unbiased estimators of the nine traits measured in 420
durum wheat genotypes. N.B. *refers to significant at p< 0.01, and ns refers to non-significant at p< 0.01.
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divergence between the two subpopulations inferred by

STRUCTURE was 0.27. On average, the expected heterozygosity

of subpopulation-1 (Cl - I) and subpopulation-2 (Cl - II) was 0.22

and 0.32, respectively. Subpopulation-1 had a mean FST value of

0.62, while subpopulation-2 had a mean FST value of 0.35,

indicating high differentiation among the individuals of each

population. Although a slight difference was observed, model-

based Bayesian clustering and distance-based PCA similarly

grouped the individuals into two subpopulations. The kinship

matrix heatmap revealed familial relationships between the

genotypes, which can be regarded as intermediate on

average (Figure 4C).

3.6 GWAS scan of phenotypic traits

Considering all test locations and combined data over

locations, GWAS was able to identify 179 significant MTAs

for the nine traits (Supplementary Table 6). Of these, 23 MTAs

were detected for DTH, 32 MTAs for DTM, 15 MTAs for GFP, 8
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MTAs for GYD, 5 MTAs for NET, 19 MTAs for PHT, 26 MTAs

for spike length (SPL), 12 MTAs for SPP and 39 MTAs for TKW.

Using BLUEs of combined data across the five environments

revealed 44 significant MTAs for the nine traits evaluated in this

study. Further results and discussions (below) focus on these

significant MTAs identified using the combined data across the

five environments. The Manhattan and quantile-quantile (Q-Q)

plots for each trait and environment are presented in

Supplementary Figures 2A-E, respectively.

3.6.1 Marker trait association for
phenological traits

For phenological traits (DTH, DTM, and GFP), 12 significant

MTAs were identified from the GWAS of combined data from the

five locations (Table 4). The GWAS scan for DTH detected six

significant MTAs on chromosomes 1B, 2A, 5B, 6B, 7A, and 7B

(Figure 5 and Table 4). The Q-Q plot showed that the data fitted the

model well, and false positive MTAs were controlled. Among these

MTAs, three were previously reported (Golabadi et al., 2011;
FIGURE 3

Distribution of the SNPs used in the present study on each durum wheat chromosome.
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Giraldo et al., 2016; Mangini et al., 2018), while three MTAs on the

B genome (AX-109859693, wsnp_BE496986B_Ta_2_2,

Ku_c24482_1132) were novel. The significant MTAs explained

1.1 to 22.2% of the total phenotypic variation in DTH. Among

the significant MTAs for DTH, wsnp_BE496986B_Ta_2_2, AX-

109859693, Ku_c24482_1132, and IACX11338 appeared significant

in two or more test environments and hence can be regarded as

stable MTAs.

The GWAS scan detected four significant MTAs across test

environments for DTM. Of these MTAs, Kukri_rep_c73477_888

on chromosome 6A was previously reported (Mangini et al., 2018)

and was detected in two environments. Three MTAs

(Tdurum_contig49186_437 and Tdurum_contig12722_779 on

chromosome 7A; and AX-109869840 on chromosome 6A) were

likely to be potential new loci (Table 4 and Figure 5). The

proportion of phenotypic variance explained by these four

significant SNPs ranged from 2 to 33%.

GWAS revealed two significant MTAs for GFP on

chromosomes 3B and 7B (Table 4 and Figure 5). The

RAC875_c62223_86 MTA on 3B was previously reported

(Giraldo et al., 2016). However, Kukri_c60966_261 on

chromosome 7B was novel and detected repeatedly in two

locations. RAC875_c62223_86 and Kukri_c60966_261 explained
Frontiers in Plant Science 10
4% and 31% of the variation in GFP obtained in the present

study, respectively.

3.6.2 Marker trait association for plant
architecture

The GWAS analysis revealed 14 MTAs significantly

associated with plant architecture traits (Table 4 and Figure 6).

For PHT, six significant MTAs were detected (Figure 6). Among

these, four (AX-158602974, and AX-95259256 on chromosome

1B, wsnp_BE443745A_Ta_2 on chromosome 5A, and

BS00091519_51 on chromosome 5B) were previously reported

(Zhang et al., 2012; Mengistu et al., 2016; Roncallo et al., 2017).

T h e o t h e r t w o M T A s ( A X - 9 5 1 5 4 5 6 0 a n d

Tdurum_contig75127_589 on chromosomes 1B and 7B,

respectively) were novel. The six significant MTAs explained

1.2 to 23% of the variation in PHT recorded in this study.

The MTA analysis for spike length (SPL) revealed five

s i gn ifican t MTAs . Among the s i gn ifican t MTAs ,

Tdurum_contig45715_1246 on chromosome 1B was

previously identified (Giraldo et al., 2016). The remaining four

MTAs (Kukri_c17062_618 and Tdurum_contig76960_213 on

chromosome 2A, Kukri_c3096_1411 on chromosome 2B, and

AX-94615777 on chromosome 5A) are novel (Figure 6). The
TABLE 3 A summary of linkage disequilibrium analysis for SNP marker pairs and the distribution of significant SNP pairs across each chromosome
of each genome.

Chromosome Total number of SNP pairs Significant SNP marker pairs at
r2 ≥ 0.3 (p< 0.01)

Average r2 Average distance (Mbp z)

1A 35,875 7,811 (21.8%) 0.20 20.4

1B 41,700 7,666 (18.4%) 0.16 21.1

2A 35,700 7,218 (20.2%) 0.17 28.3

2B 42,700 8,709 (20.4%) 0.17 23.8

3A 29,800 5,297 (17.8%) 0.16 32.9

3B 39,550 10,362 (26.2%) 0.21 27.4

4A 25,250 3,580 (14.2%) 0.14 38.4

4B 20,000 3,805 (19.0%) 0.17 44.9

5A 36,600 8,144 (22.3%) 0.19 23.7

5B 45,100 8,738 (19.4%) 0.17 20.1

6A 31,450 8,454 (26.9%) 0.22 25.6

6B 36,900 7,586 (20.6%) 0.18 24.6

7A 39,450 4,781 (12.1%) 0.12 23.9

7B 30,700 5,234 (17.0%) 0.15 30.8

A genome 234,125 45,284 (19.3%) 0.17 26.9

B genome 293,250 52,102 (17.8%) 0.17 25.8

Total 490,775 97,386 (19.8%) 0.17 26.8
z Mbp, Mega base pair.
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proportion of the variation in SPL elucidated by the significant

MTAs varied from 2.75% to 12.3%. For NET, GWAS revealed

two (GENE-0410_71 and AX-94782013) significant MTAs on

chromosome 1B and 7B, respectively (Table 4 and Figure 6),

which have not been previously reported. These MTAs

explained 2.8% and 5.6% of the variation in NET, respectively.

3.6.3 Marker trait association for grain yield
and related traits

GWAS for grain yield and yield-related traits evidenced 18

significant MTAs (Table 6 and Figure 7). The association scan

for SPP resulted in seven significant MTAs on chromosomes 1B,

2B, 3A, 4A, and 7A. The proportion of phenotypic variance

explained by the associated MTAs ranged from 1.1% to 17%. Of

the seven significant MTAs for SPP, four (AX-89760660,

Tdurum_contig25602_212, BS00110281_51, and AX-

158591111) were previously reported (Golabadi et al., 2011;

Mengistu et al., 2016; Soriano et al., 2016; Kidane et al., 2017a;

Roncallo et al., 2017; Abu-Zaitoun et al., 2018; Mangini et al.,

2018), whereas the remaining three (RAC875_c400_193, AX-

158597411, and AX-94631122) SNPs are novel.

For GYD, GWAS revealed four significant MTAs on

chromosomes 1B, 5A, 5B, and 7A. The proportion of

phenotypic variance explained by the significant MTAs ranged
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from 1.74% (RAC875_c57656_170 on chromosome 7A) to

44.95% (IAAV3365 on chromosome 5A). Alleles of the high

signal MTAs (locus IAAV3365, A/G alleles) had a highly

significant effect on grain yield (Figure 8A). The genotypes

carrying allele A had higher average grain yield across the five

environments as compared to genotypes carrying allele G.

RAC875_c57656_170 was previously reported for GYD

(Maccaferri et al., 2014), whereas the remaining three MTAs

(IAAV3365, RFL_Contig3481_1669 on chromosome 1B, and

Excalibur_c51720_84 on chromosome 5B) were newly detected

in the present study.

The genome-wide association analysis identified seven

significant MTAs for TKW on chromosomes 1B, 3B, 5A, 6A,

and 7A. The phenotypic variance explained by the associated

SNPs ranged from 1.05% to 10.6%. Among the MTAs

significantly associated with TKW, two (AX-158606713 and

wsnp_Ex_rep_c66939_65371026 on chromosomes 1B and 7A,

respectively) were previously reported. However, the other five

MTAs (BS00071597_51, AX-158541767, RAC875_c41315_157,

AX-158564275, and AX-94640059 on chromosomes 3B, 5A, 6A,

and 7A, respectively) were novel. The effect of alleles on locus

AX-158564275 (A/G alleles) revealed a highly significant

difference in TKW (Figure 8B). The genotypes with the allele

A had high TKW compared to genotypes carrying allele G.
A

B

D

C

FIGURE 4

Principal component analysis (A, B), kinship (C), and population structure analysis (D).
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TABLE 4 Summary of significant marker-trait associations for the nine traits revealed based on the combined data of the five locations on each
durum wheat chromosome (CHR).

SNP (MTAs) CHR POS (bp) P-value MAF Effect PVEZ Trait

AX-158591262 7A 30075367 5.13281E-07 0.31 -0.51 1.62

DTH

AX-94884567 2A 756029643 5.54677E-08 0.16 0.77 1.1

IACX11338 1B 522669860 1.43456E-06 0.09 -2.04 22.18

AX-109859693 5B 5172617 3.78017E-09 0.05 1.16 5.13

wsnp_BE496986B_Ta_2_2 6B 568039035 1.80668E-08 0.17 -0.68 5.28

Ku_c24482_1132 7B 155935903 3.69626E-07 0.29 -0.66 1.67

AX-109869840 6A 603461435 2.75361E-06 0.05 -0.74 21.07

DTM
Kukri_rep_c73477_888 2A 70572673 1.55589E-23 0.09 -2.54 32.88

Tdurum_contig49186_437 7A 32558067 5.98292E-09 0.49 0.29 1.88

Tdurum_contig12722_779 7A 44540113 4.95657E-07 0.07 0.41 4.45

RAC875_c62223_86 3B 763192473 1.31126E-07 0.32 -0.53 3.58
GFP

Kukri_c60966_261 6B 693337622 5.50108E-07 0.08 -1.41 30.67

RFL_Contig3481_1669 1B 4043159 5.87000E-06 0.10 0.02 5.45

GYD
Excalibur_c51720_84 7A 709197555 6.71000E-06 0.05 0.02 15.75

RAC875_c57656_170 7A 614197852 1.75039E-06 0.46 0.17 1.74

IAAV3365 5A 548344620 1.87701E-10 0.06 -0.79 44.95

GENE-0410_71 1B 523053033 1.78840E-07 0.44 0.22 5.61
NET

AX-94782013 7B 604310198 3.10157E-06 0.09 -0.25 2.79

AX-158602974 1B 580658793 5.16606E-11 0.06 -4.33 2.68

PHT

BS00091519_51 5B 5174649 2.79112E-06 0.05 -2.03 9.64

AX-158521163 1B 669849432 3.25148E-06 0.06 -2.10 1.2

AX-95259256 1B 629504430 2.07679E-07 0.12 -1.52 4.51

wsnp_BE443745A_Ta_2_1 5A 439542987 7.51027E-08 0.37 1.12 2.59

AX-95154560 6B 120830636 5.51278E-08 0.05 2.73 23.76

Tdurum_contig75127_589 7B 697951769 5.0922E-08 0.06 -3.88 8.34

Tdurum_contig45715_1246 1B 314321199 6.74631E-07 0.48 -0.26 3.62

SPL

Kukri_c17062_618 2A 522595273 4.96382E-07 0.28 0.17 2.75

Tdurum_contig76960_213 2A 492195805 3.17135E-07 0.13 -0.63 12.3

Kukri_c3096_1411 2B 314134332 3.40111E-07 0.22 0.28 3.02

AX-94615777 5A 529858969 2.51717E-07 0.45 0.15 1.01

Tdurum_contig25602_212 2B 546442999 3.25386E-07 0.24 0.22 1.76

SPP

AX-158591111 7A 33518205 7.03418E-08 0.24 -0.24 1.85

BS00110281_51 4A 724872914 1.51333E-06 0.06 0.41 4.5

AX-89760660 1B 519060573 8.65163E-09 0.07 -0.49 16.82

RAC875_c400_193 1B 1547605 8.21951E-07 0.10 -0.25 1.53

AX-158597411 2B 99223728 2.38152E-06 0.49 0.24 2.27

AX-94631122 3A 723577013 1.23025E-09 0.23 0.31 1.12

(Continued)
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3.6.4 Identification of putative novel MTAs and
their underlying candidate genes

According to the LD decay information for each chromosome,

a genomic region of ten Mbp around each significant SNP (five

Mbp downstream and five Mbp upstream of the significant SNP) is

considered to be a QTL. Significant SNPs within the ranges of 10

Mbp apart are considered to refer to the same QTL. Based on this

approach, 37 QTLs were identified for the 44 significant MTAs

(Table 5). The names of these QTLs (q.gwas.01 to q.gwas.37) are

provided in the first column of Table 5. Among the 37 QTLs, 16

were located in or near genomic regions previously reported for the

corresponding traits (Golabadi et al., 2011; Maccaferri et al., 2014;

Giraldo et al., 2016; Mengistu et al., 2016; Soriano et al., 2016;

Kidane et al., 2017a; Abu-Zaitoun et al., 2018; Mangini et al., 2018;

Roncallo et al., 2018), while 21 were novel (Table 5). Two QTLs for

SPP (q.gwas.15 and q.gwas.20) and one QTL (q.gwas.08) for TKW

were previously described based on Ethiopian durum wheat

germplasm (Mengistu et al., 2016; Kidane et al., 2017a). Genomic

regions for five putative QTLs (q.gwas.01, q.gwas.02, q.gwas.22,

q.gwas.24, and q.gwas.30) overlap with more than one trait

evaluated in this study (Table 5). For example, four significant

MTAs for DTH, DTM, SPP, and TKWwere co-localized and hence

were considered to be referring to the same QTL (q.gwas.30)

(Table 5). The analysis of the sequences of these putative QTLs

genomic regions based on durum wheat, the reference genome at

the Ensemble Plants database, led to the identification of 774

potential candidate genes (Supplementary Table 7).

The significance of the candidate genes was evaluated by

reviewing previously published genomic regions associated with

the traits targeted in the present study (Zhang et al., 2012;

Maccaferri et al., 2016; Maccaferri et al., 2019; Kidane et al., 2019;

Mazzucotelli et al., 2020; Zhao et al., 2020). This resulted in 32 genes

related to eight of the nine target traits in durum wheat (Table 6).

The putat ive candidate genes TRITD7Av1G01175 ,

TRITD7Av1G017240, and TRITD7Av1G017550 (all located on

chromosome 7A), which encode Growth-regulating factor, Zinc-

finger CCCH domain protein TE, and NAC domain-containing
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protein, respectively, were associated with DTH and DTM. The

genes TRITD1Bv1G168480 and TRITD7Bv1G057630 encode

WRKY transcription factor and Flowering Locus T/Terminal

Flower 1-like protein, respectively, were reported to regulate

DTH. The TRITD1Bv1G000110 gene, on chromosome 1B, which

encodes Tryptophan aminotransferase-related protein 2, was shown

to be associated with SPP and GYD (Table 6).
4 Discussion

This study used GWAS to define durum wheat genomic

regions associated with phenological, plant architecture, grain

yield, and yield-related traits. Furthermore, analyses of

population structure and linkage disequilibrium were carried

out to increase the efficiency of detecting reliable marker-trait

associations as well as identifying the genetic basis of those

associations. The present study utilized a large number of diverse

durum wheat landraces and cultivars, which were grown across

diverse environments in Ethiopia. This facilitated the

identification of novel SNP loci associated with nine durum

wheat phenotypic traits, including grain yield and grain yield-

related traits. The present study findings have significant

implications for both the development of molecular markers

for genomics-led breeding and for providing new insights into

the architecture of genomic regions regulating various traits of

interest in durum wheat. These could facilitate the improvement

of grain yield and other desirable characteristics to support

global food security.

To meet the growing demand for durum wheat grains as well

as the challenges to its production brought about by the

expanding environmental changes, it is imperative that the

genetic resources of durum wheat, including landraces,

modern cultivars, and breeding lines, be effectively utilized for

breeding new cultivars (Kankwatsa et al., 2017; Maccaferri et al.,

2019b; Kumar et al., 2020; Mazzucotelli et al., 2020). As such,

identifying loci that regulate desirable traits in breeding
TABLE 4 Continued

SNP (MTAs) CHR POS (bp) P-value MAF Effect PVEZ Trait

AX-158606713 1B 546979073 1.26545E-06 0.26 -0.67 1.05

TKW

wsnp_Ex_rep_c66939_65371026 7A 6480158 1.99623E-06 0.18 -0.81 1.72

BS00071597_51 3B 803879943 7.43197E-09 0.20 1.44 7.93

AX-158541767 3B 61267921 2.83169E-07 0.07 -1.82 10.6

RAC875_c41315_157 5A 431829169 3.78422E-06 0.10 -1.28 5.65

AX-158564275 6A 528989018 3.23204E-10 0.09 -1.57 5.45

AX-94640059 7A 686968079 4.86263E-06 0.44 0.65 1.23
frontie
Chr, Chromosome; POS, Physical position of SNP; bp, Base pair; MAF, Minor allele frequency; PVE, Phenotypic variance explained; DTM, Days to heading; DTM, Days to maturity; GFP, Grain
filling period; NET, Number of effect tillers per plant; SPL, Spike length; PHT, Plant height; SPP, Number of spikelets per spike; TKW, Thousand kernel weight; GYD, Grain yield.
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programs helps to develop markers for marker-assisted

breeding, thus contributing to food security (Garcia et al.,

2019; Wang et al., 2019; Mérida-Garcıá et al., 2020).

The present study revealed highly significant contributions

of genotypes, environments, and genotype by environment

interactions to the phenotypic variations of the target traits

(p< 0.001), which is consistent with the results of previous

research on durum wheat (Mengistu et al., 2015; Mohammadi

et al., 2018; Mekonnen et al., 2021). The observed high genotypic

variance, genotypic coefficient of variation, and broad-sense

heritability for TKW and GFP, strongly suggest that their

variation is mainly due to heritable genetic differences among
Frontiers in Plant Science 14
the landraces and cultivars. There was a low genotypic variance

and genotypic coefficient of variation for GYD, indicating the

challenges associated with improving this trait. Nevertheless,

moderate to a high level of broad-sense heritability were

recorded for all traits, meaning that a significant part of the

observed variation is heritable and that the results agree with

previous findings in durum wheat (Sukumaran et al., 2018;

Alemu et al., 2020a).

The present study found that GYD had a moderate but

significant (p< 0.01) positive correlation with SPP, and TKW,

indicating that the simultaneous selection of desirable

characteristics of these traits could lead to the improvement of
A B

D

E F

C

FIGURE 5

Manhattan and Q-Q plots of GWAS scan for phenological traits generated based on combined data from five locations. DTH (A, B), DTM (C, D),
and GFP (E, F). For the Manhattan plots, the y-axis represents -log10 (p) of the traits, while the x-axis represents the relative positions of the SNP
markers on each chromosome. DTH, Days to heading; DTM, Days to maturity; GFP, Grain-filling period.
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grain yield in this crop. However, GYD negatively correlated

with DTH and PHT, indicating that late-heading genotypes

generally have lower grain yield than early-heading types.

However, the early-heading types appear to have a more

extended grain-filling period, as a very low but significant

positive correlation was obtained for GYD versus DTM. TKW

exhibited a moderate positive correlation with GYD, and GFP,

implying that direct improvement of these traits may improve

the former, which contributes to enhancing GYD. Conversely,

TKW had a negative relation with DTH and DTM. Thus late-

maturing cultivars will have a relatively low TKW.

The LD among the SNP marker pairs showed a sharp decline

within the physical distance ranging from 2.02 to 10.4 Mbp, with

an average of 4.26 Mbp. This decline in LD is far below the

results of previous research using Ethiopian durum wheat

landraces (Alemu et al., 2021b), which reported an average

physical distance of 69.1 Mbp. Similarly, Mekonnen et al.,

(2021) found a higher mean LD decay (31.44 Mbp, r2 = 0.2)
Frontiers in Plant Science 15
in their study on diverse Ethiopian bread wheat germplasm. This

disparity could arise due to the type and density of markers,

genomic regions the markers cover, and differences in the

sample used in these studies. However, Fayaz et al., 2019

found a low LD decay (2–3 cM) of the A and B sub-genomes

using Iranian durum wheat landraces at a critical r2 = 0.11.

Likewise, Rufo et al., (2019) noted an LD decay ranging from 1 to

9 cM on A and B genomes from landraces and released cultivars

of Mediterranean wheat. The fastest LD decay rate of an average

physical distance of 2.02 Mbp was recorded for chromosome

7A.In contrast, the slowest was recorded for chromosome 4A

(10.04 Mbp), which indicates the differences in recombination

rates among different genomic regions of different

chromosomes. On average, the A genome showed a more

rapid LD decay than the B genome (Supplementary Table 4),

and more substantial selection pressure could be partly caused in

the A genome than in the B genome (Liu et al., 2019; Kumar

et al., 2020). This result most likely confirms the impact of
A B

D

E F

C

FIGURE 6

Manhattan and Q-Q plots of GWAS scan for plant architecture traits generated based on the combined data from five locations. PHT (A, B), SPL
(C, D), NET (E, F). For the Manhattan plots, the y-axis represents -log10 (p) of the traits, while the x-axis represents the relative positions of the
SNP markers on each chromosome. PHT, Plant height; SPL, Spike length; NET, Number of effective tillers per plant.
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genetic drift, mutation, gene flow, recombination, the pressure of

population selection, and historical events on both A and B

genomes (Fayaz et al., 2019).

The population clustering inferred by STRUCTURE and

PCA divided the genotypes into two sub-populations, similar to

the results of earlier research (Wang et al., 2019; Alemu et al.,

2020b; Kumar et al., 2020; Mekonnen et al., 2021). Based on Q-

score values of STRUCTURE analysis (Q > 0.80), 96% of the

landraces were pure, and 4% of the genotype were admixtures.

The kinship matrix was used to estimate the family relatedness

and to confirm the relation within the genotypes. Hence, the

cumulative results from STRUCTURE, PCA, and kinship
Frontiers in Plant Science 16
suggest adjusting the GWAS model to avoid bias arising from

spurious associations, thereby reducing false-positive

associations arising from co-ancestry. Moreover, FarmCPU, a

robust statistical model for GWAS, adequately accounted for the

spurious associations that arose from population structure,

cryptic relatedness, and marker effects, as shown by Q-Q plots.

Based on the five-test sites´ mean data, the GWAS revealed 44

MTAs. The SNPs associated with the target traits were

distributed across the whole chromosome except chromosome

1A, which did not bear any significant MTAs.

Using GWAS, different genomic regions associated with

grain yield were identified in the present study. The putative
A B

D

E F

C

FIGURE 7

Manhattan and Q-Q plots of GWAS scan for SPP (A, B), TKW (C, D), and GYD (E, F) generated based on the combined data from five locations.
For the Manhattan plots, the y-axis represents -log10 (p) of the traits, while the x-axis represents the relative positions of the SNP markers on
each chromosome. SPP, Number of spikelets per spike; TKW, Thousand kernel weight; GYD, Grain yield.
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A B

FIGURE 8

Boxplot depicting the effect of alleles located on locus IAAV3365 on grain yield (A) and locus AX-158564275 on thousand kernel weight (B). The
estimated mean BLUEs value was used to generate the boxplot to reveal the effects of respective alleles on grain yield and thousand kernel
weight. Tukey´s HSD (Honestly Significant Difference) test was applied to see the differences of alleles in 420 durum wheat genotypes. The
letters above the boxplot indicate the significant differences among the mean performance of genotypes carrying each allele at a probability
level of p< 0.05.
TABLE 5 Summary of putative quantitative trait loci (QTLs) identified for the nine phenotypic traits analyzed in the present study using Ethiopian
durum wheat germplasm.

Putative QTL Associated SNP Chr SNP position (bp) TAPQTL

q.gwas.01a IACX11338 1B 522669860 DTH

q.gwas.02 a RFL_Contig3481_1669 1B 4043159 GYD

q.gwas.01 a GENE-0410_71 1B 523053033 NET

q.gwas.03 a AX-158602974 1B 580658793 PHT

q.gwas.04 a AX-158521163 1B 669849432 PHT

q.gwas.05 AX-95259256 1B 629504430 PHT

q.gwas.06 a Tdurum_contig45715_1246 1B 314321199 SPL

q.gwas.02 RAC875_c400_193 1B 1547605 SPP

q.gwas.07 AX-89760660 1B 519060573 SPP

q.gwas.08 a AX-158606713 1B 546979073 TKW

q.gwas.09 a AX-94884567 2A 756029643 DTH

q.gwas.10 Kukri_rep_c73477_888 2A 70572673 DTM

q.gwas.11 Tdurum_contig76960_213 2A 492195805 SPL

q.gwas.12 Kukri_c17062_618 2A 522595273 SPL

q.gwas.13 Kukri_c3096_1411 2B 314134332 SPL

(Continued)
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QTLs identified for this trait are q.gwas.02 (0.3 – 5.8 Mbp) on

chromosome 1B , q . gwas .21 (544 .7 – 554 .9 Mbp)

on chromosome 5A, q.gwas.32 (609.2 – 619.2 Mbp) on

chromosome 7A, and q.gwas.33 (703.3 – 714.2 Mbp)

on chromosome 7A. Among them, q.gwas.02, q.gwas.21, and

q.gwas.32 are novel QTLs, as these genomic regions have not

previously been reported for their association with grain yield.

The putative QTL q.gwas.33 on chromosome 5B is co-localized
Frontiers in Plant Science 18
within the same genomic region of a QTL reported by

Maccaferri et al., (2014); Maccaferri et al., (2016) for grain

yield and total root numbers, respectively using durum wheat

recombinant inbred lines. The QTL regions of q.gwas.33 is also

identified for spikes per plant (Mengistu et al., 2016), kernel Fe

content (Velu et al., 2017), kernels per spikelets (Peng et al.,

2003), fusarium head blight resistance (Ghavami et al., 2011),

yellow rust resistance (Liu et al., 2017a), and stem rust resistance
TABLE 5 Continued

Putative QTL Associated SNP Chr SNP position (bp) TAPQTL

q.gwas.14 a AX-158597411 2B 99223728 SPP

q.gwas.15 Tdurum_contig25602_212 2B 546442999 SPP

q.gwas.16 AX-94631122 3A 723577013 SPP

q.gwas.17 a RAC875_c62223_86 3B 763192473 GFP

q.gwas.18 AX-158541767 3B 61267921 TKW

q.gwas.19 BS00071597_51 3B 803879943 TKW

q.gwas.20 a BS00110281_51 4A 724872914 SPP

q.gwas.21 IAAV3365 5A 548344620 GYD

q.gwas.22 wsnp_BE443745A_Ta_2_1 5A 439542987 PHT

q.gwas.23 AX-94615777 5A 529858969 SPL

q.gwas.22 RAC875_c41315_157 5A 431829169 TKW

q.gwas.24 a AX-109859693 5B 5172617 DTH

q.gwas.24 a BS00091519_51 5B 5174649 PHT

q.gwas.25 a AX-109869840 6A 603461435 DTM

q.gwas.26 AX-158564275 6A 528989018 TKW

q.gwas.27 wsnp_BE496986B_Ta_2_2 6B 568039035 DTH

q.gwas.28 Kukri_c60966_261 6B 693337622 GFP

q.gwas.29 AX-95154560 6B 120830636 PHT

q.gwas.30 a AX-158591262 7A 30075367 DTH

q.gwas.30 a Tdurum_contig49186_437 7A 32558067 DTM

q.gwas.31 Tdurum_contig12722_779 7A 44540113 DTM

q.gwas.32 RAC875_c57656_170 7A 614197852 GYD

q.gwas.33 a wsnp_Ex_c16045_24471413 5B 685974689 GYD

q.gwas.30 a AX-158591111 7A 33518205 SPP

q.gwas.30 a wsnp_Ex_rep_c66939_65371026 7A 6480158 TKW

q.gwas.34 AX-94640059 7A 686968079 TKW

q.gwas.35 Ku_c24482_1132 7B 155935903 DTH

q.gwas.36 AX-94782013 7B 604310198 NET

q.gwas.37 Tdurum_contig75127_589 7B 697951769 PHT
fro
aPreviously identified QTLs, Chr, chromosome; DTH, Days to heading; DTM, Days to physiological maturity; GFP, Grain filling; NET, Number of effective tillers per plant; GFP, Grain filling
period; PHT, Plant height; SPL, Spike length; SPP, Number of spikelets per spike; TKW, Thousand kernel weight; GYD, Grain yield; TAPQTL, Traits associated with Putative QTL.
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TABLE 6 Summary of selected genes associated with some of the putative QTLs identified in the present study.

S/
N SNP Chr PQAG Gene ID GSS GSE Description of gene Trait

1 IACX11338 1B q.gwas.01 TRITD1Bv1G168480 523422292 523424581 WRKY transcription factor

2 IACX11338 1B q.gwas.01 TRITD1Bv1G169970 526873942 526876463 WRKY transcription factor

3 IACX11338 1B q.gwas.01 TRITD1Bv1G170060 527017659 527018012 WRKY DNA-binding protein 39 G

4 AX-158591262 7A q.gwas.30 TRITD7Av1G011750 20905388 20908162 Growth-regulating factor

5 AX-158591262 7A q.gwas.30 TRITD7Av1G017240 30780092 30782694 Zinc finger CCCH domain protein TE? DTH

6 AX-158591262 7A q.gwas.30 TRITD7Av1G017550 31546753 31548244 NAC domain-containing protein, putative

7 Ku_c24482_1132 7B q.gwas.35 TRITD7Bv1G056500 157854628 157855010 Seed maturation protein LEA 4

8 Ku_c24482_1132 7B q.gwas.35 TRITD7Bv1G056720 158562417 158562866 Zinc finger family protein

9 Ku_c24482_1132 7B q.gwas.35 TRITD7Bv1G057630 162519251 162520668
FLOWERING LOCUS T/TERMINAL
FLOWER 1-like protein

10 Ku_c24482_1132 7B q.gwas.35 TRITD7Bv1G058480 164897716 164902189 Phosphate transporter PHO1-like protein

11 AX-109869840 6A q.gwas.25 TRITD6Av1G220960 603258174 603260717 Ethylene receptor

12 Tdurum_contig49186_437 7A q.gwas.30 TRITD7Av1G011750 20905388 20908162 Growth-regulating factor DTM

13 Tdurum_contig49186_437 7A q.gwas.30 TRITD7Av1G017240 30780092 30782694 Zinc finger CCCH domain protein TE?

14 Tdurum_contig49186_437 7A q.gwas.30 TRITD7Av1G017550 31546753 31548244 NAC domain-containing protein, putative

15 Kukri_c60966_261 6B q.gwas.28 TRITD6Bv1G226900 693249887 693252855 Receptor protein kinase, Putative GFP

16 AX-158602974 1B q.gwas.03 TRITD1Bv1G189370 580660944 580663298 Calcineurin B-like protein

17 AX-158602974 1B q.gwas.03 TRITD1Bv1G189570 580988293 580988886 Receptor-like protein kinase PHT

18 AX-158602974 1B q.gwas.03 TRITD1Bv1G191400 585136543 585142125 Zinc finger protein

19 BS00091519_51 5B q.gwas.24 TRITD5Bv1G001780 5178666 5198798 Cytochrome P450-like protein

20 Kukri_c17062_618 2A q.gwas.12 TRITD2Av1G189490 526757053 526762842 Acyl-CoA N-acyltransferase

21 Kukri_c17062_618 2A q.gwas.12 TRITD2Av1G190600 529454657 529455487 Ring finger protein, Putative SPL

22 Kukri_c3096_1411 2B q.gwas.13 TRITD2Bv1G109560 316041878 316042468 E3 ubiquitin-protein ligase

23 RAC875_c400_193 1B q.gwas.02 TRITD1Bv1G000110 327500 328114
Tryptophan aminotransferase-related
protein 2

24 AX-89760660 1B q.gwas.07 TRITD1Bv1G166820 518699664 518701642
Zinc finger CCCH domain-containing
protein 4

25 AX-89760660 1B q.gwas.07 TRITD1Bv1G167110 519057378 519065351
UDP-GLUCOSE PYROPHOSPHORYLASE
1

SPP

26 Tdurum_contig25602_212 2B q.gwas.15 TRITD2Bv1G184650 545766407 545768972 ethylene-responsive transcription factor

27 AX-94631122 3A q.gwas.16 TRITD3Av1G275580 723577014 723578195 E3 ubiquitin-protein ligase

28 AX-158606713 1B q.gwas.08 TRITD1Bv1G176830 544878459 544879181
Ethylene-responsive factor-like
transcription factor

29 AX-158606713 1B q.gwas.08 TRITD1Bv1G177060 545904571 545908993 E3 ubiquitin-protein ligase TKW

30 AX-158606713 1B q.gwas.08 TRITD1Bv1G177540 547614469 547614996 Blue copper protein

31 RFL_Contig3481_1669 1B q.gwas.02 TRITD1Bv1G000110 327500 328114
Tryptophan aminotransferase-related
protein 2 GYD

32 IAAV3365 5A q.gwas.21 TRITD5Av1G205000 550462923 550477847 ABC transporter
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Chr, chromosome; GSS, Gene Sequence starts; GSE, Gene sequence ends; APQ, Associated putative QTL; DTH, Days to heading; DTM, Days to physiological maturity; GFP, Grain filling
period; PHT, Plant height; SPL, Spike length; SPP, Number of spikelets per spike; TKW, Thousand kernel weight; GYD, Grain yield.
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(Letta et al., 2014). This QTL q.gwas.33 is also associated with

g ene s TRITD5BvG245710 (myb - l i k e p ro t e i n X) ,

TRITD5Bv1G246830 (KH domain containing protein),

TRITD5Bv1G247760 (NBS-LRR disease resistance protein –like

protein) and TRITD5Bv1G246270 (Glycosyltransferase).

The QTL region of q.gwas.02 (RFL_Contig3481_1669) for

GYD, identified in this study, overlaps with QTLs for several

traits such as total root number and length (Maccaferri et al.,

2016), grain protein content and concentration (Suprayogi et al.,

2009), spikes per plant (Mengistu et al., 2016), heading date

(Maccaferri et al., 2008), grain filling period (Soriano et al.,

2016), semolina yellowness (Colasuonno et al., 2017), grain yield

per spike and grain yield (Roncallo et al., 2018), grain protein

content (Giraldo et al., 2016) and fusarium head blight resistance

(Ghavami et al., 2011). The overlapping of QTLs for several

important traits in this genomic region indicates its significance

in future durum wheat breeding for grain yield and end-use

quality traits. The genomic region corresponding to QTL

q.gwas.21 on chromosome 5A (MTA for IAAV3365 SNP and

GYD) is a novel major QTL for grain yield, explaining the largest

proportion of phenotypic variance (r2 = 44.95%) as compared to

all other putative QTLs reported here. This is a highly significant

result of this study, which needs to be validated through further

research, including fine mapping to pinpoint the gene(s)

responsible for this QTL. Interestingly, the genomic region of

this QTL overlaps with previously identified QTL for number of

kernels per spike (Kidane et al., 2017a), yellow rust resistance

(Liu et al., 2017b), threshing time (Tzarfati et al., 2014), leaf rust

resistances (Aoun et al., 2016), and total root number

(Maccaferri et al., 2016). Therefore, this genomic region is a

key target region for the improving of durum wheat, for grain

yield and threats of wheat arising due to the impacts of climate

change. The TRITD5Av1G205000 (an ABC transporter) gene is

one of the potential candidate genes behind this QTL

(q.gwas.21). This is because previous research indicated that

ABC transporter genes affect grain formation in wheat during

heading and also modulate the ripening of the heads (Wanke

and Üner Kolukisaoglu, 2010; Walter et al., 2015).

The present study identified several novel QTLs for grain

yield-related traits, SPP and TKW. Additional MTAs that

confirmed previously identified genomic regions were also

detected for these traits. The three novel putative QTLs for

SPP are q.gwas.07 (721.4–725.8 Mbp) on chromosome 1B,

q.gwas.15 (541.4–551.4 Mbp) on chromosome 2B and

q.gwas.16 (721.4–725.8 Mbp) on chromosome 3A. For TKW,

five novel putative QTLs, i.e., q.gwas.18 (58.8–68.0 Mbp) on

chromosome 3B, q.gwas.19 (803.2 – 812.9 Mbp) on chromosome

3B, q.gwas.22 (431.8–442.1 Mbp) on chromosome 5A, q.gwas.26

(524–534 Mbp) on chromosome 6A, and q.gwas.34 (681.9–692

Mbp) on chromosome 7A were identified. Fine mapping of these

genomic regions is required to identify the genes responsible for

these QTLs for SPP and TKW. However, for four of the five

novel QTLs for SPP, we were able to identify potential candidate
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genes, i.e., TRITD1Bv1G000110 (Tryptophan aminotransferase-

related protein 2), TRITD1Bv1G167110 (UDP-Glucose

Pyrophosphorylase 1), TRITD2Bv1G184650 (ethylene-

responsive transcription factor), and TRITD3Av1G275580 (E3

ubiquitin-protein ligase). TRITD2Bv1G184650 has been

reported to regulate the initiation and development of

spikelets in wheat, particularly when the temperature is low

(Yu et al., 2021).

Several putative QTLs for SPP are identified here, i.e.,

q.gwas.02 (0.3–5.8 Mbp), q.gwas.14 (94–104.6 Mbp), q.gwas.20

(721.4–725.8 Mbp), and q.gwas.30 (2–35 Mbp) were found co-

localized with previously reported QTLs for these traits on

chromosomes 1B, 2B, 4A, and 7A, respectively (Golabadi

et al., 2011; Mengistu et al., 2016; Kidane et al., 2017a;

Roncallo et al., 2017; Mangini et al., 2018; Soriano et al., 2018;

Li et al., 2019; Rahimi et al., 2019; Alipour et al., 2021). Similarly,

putative QTLs for TKW were co-localized with QTLs previously

identified, i.e., q.gwas.08 (MTA for AX-158606713) with a QTL

identified based on Ethiopian durum wheat germplasm

(Mengistu et al., 2016), and q.gwas.30 with a QTL identified by

Golabadi et al. (2011) based on F3 and F4 populations of durum

wheat in Iran, and by Mangini et al. (2018) from a collection of

tetraploid wheat grown in Southern Italy. The genomic region

regarded as QTL q.gwas.30 in this study was associated with four

traits (DTH, DTM, SPP, TKW) (Table 5). This suggests that

either the same gene with pleiotropic effects is involved in

regulating these traits, or different genes in this genomic

region regulate their corresponding traits or a combination of

both. Thus, further research is required to identify common SNP

markers representing the four traits in this genomic region and

subsequent use in marker-assisted selection for improving the

crop. Several genes encoding growth-regulating factor, seed

maturation protein, phosphate transporter, phototropic-

responsive NPH3 protein G, disease resistance protein RPM1,

phosphate-responsive 1 family protein, E3-ubiquitin-protein

ligase SINA-like 10, potassium transporter, and chloroplast

envelope membrane protein, are among the likely candidates

for the QTL q.gwas.30 (Supplementary Table 7).

The marker-trait association analysis conducted via GWAS

discovered novel and previously identified genomic regions

(putative QTLs) associated with DTH. Of these, q.gwas.01

(522.7–528.6 Mbp of chromosome 1B), q.gwas.09 (753.4–757.6

Mbp of chromosome 2A), and q.gwas.30 (2–35 Mbp Mbp of

chromosome 3B) were previously reported for this trait

(Golabadi et al., 2011; Roncallo et al., 2017; Mangini et al.,

2018). These QTLs are significant at two or more test locations

and hence can be considered stable MTAs across environments.

The present findings also confirmed the results reported in

previous studies for DTH on chromosomes 1B, 2A, and 3B

(Kidane et al., 2017b; Ogbonnaya et al., 2017; Li et al., 2019;

Rahimi et al., 2019; Wang et al., 2019). Hence, there is solid

evidence of genes regulating DTH in these genomic regions. One

of the novel putative QTLs for DTH is q.gwas.35, covering a
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151.9–165.3 Mbp region on chromosome 7B. This genomic

region contains the TRITD7Bv1G057630 gene that encodes

Flowering Locus T/Terminal Flower 1-like protein. Previous

research on wheat, soybean, and Arabidopsis indicates that

this gene is located in the region flanking FT-D1, a major gene

regulating flowering in wheat, soybean, and Arabidopsis (Sun

et al., 2019; Isham et al., 2021). Hence, if breeders aim to improve

durum wheat for DTH, it is advisable to consider the QTL

regions of q.gwas.35 to get information related to DTH.

Furthermore, as previously shown (Wu et al., 2008; Zhao

et al., 2020), the q.gwas.01 QTL region contains a potential

candidate gene TRITD1Bv1G168480 (WRKY). This gene

involved in regulating leaf senescence. It is also known to have

major roles at various stages of wheat development affecting

productivity and product quality and was predicted to interact

with DTH. Similarly, the TRITD7Av1G017240 (zinc finger

CCCH-type transcription factor) gene, which promotes wheat

flowering, was also identified in this study. Hence, it would be

worthwhile to conduct further research on this genomic region

to identify the gene involved in q.gwas.01 and to understand the

relationship between leaf senescence and DTH in durum wheat.

A previously known genomic region and three novel

genomic regions (putative QTLs) associated with DTM were

found on chromosomes 2A, 6A, and 7A. These QTLs explained

2–33% of the variation in DTM. The QTL designated as

q.gwas.25 (601.5–615.3 Mbp of chromosome 6A) was reported

in a previous study on wheat (Mangini et al., 2018). The novel

putative QTLs are located on chromosomes 2A (67.5–70.6 Mbp;

q.gwas.10) and 7A (2.1–35.1 Mbp; q.gwas.30, and 35.5–68.8

Mbp; q.gwas.31). The TRITD6Av1G220960 (Ethylene receptor)

gene, which is located within the genomic region of q.gwas.25, is

a potential candidate gene for q.gwas.25. Previous research has

suggested that ethylene receptors are most likely related to the

duration of seed development and maturation; i.e., the duration

embryo development (Hays et al., 2007). However, in previous

findings in maize, grain yield increments were observed through

ethylene signal reduction (Shi et al., 2015). Similar to the

previous study (Han et al., 2021), TRITD7Av1G011750

(growth-regulating factor), TRITD6Av1G017240 (Zinc finger

CCCH domain protein TE), and TRITD7Av1G017550 (NAC

domain-containing protein) genes have been found in the

genomic regions of QTLs for DTH identified in this study,

and are potential candidate genes for the corresponding QTLs.

Studies have shown that these genes are mainly involved in

regulating growth, development, biotic and abiotic stress

adaptation in wheat, rice, and other crop plants and may also

determine the variation in phenological traits in wheat and rice.

MTA analysis for PHT identified four putative QTLs,

q.gwas.03 (580.6–585.4 Mbp of chromosomes 1B), q.gwas.04

(669.5–674.7 Mbp of chromosomes 1B) and q.gwas24 (628.2–

630.9 Mbp of chromosomes 5B), similar to the previous reports

(Zhang et al., 2012; Roncallo et al., 2017). This study also found

novel MTAs and putative QTLs on chromosome 1B (q.gwas.05;
Frontiers in Plant Science 21
628.2 – 630.9 Mbp), 5A (q.gwas.22; 431.8–442 Mbp), 6B

(q.gwas.29; 119.6–121.5 Mbp), and 7B (q.gwas.37; 686.4–697.9

Mbp). These results show that all significant MTAs for PHT were

on the B genome except one MTA on 5A. This may serve as an

indicator of potential hotspot regions for genes associated with

PHT. The TRITD1Bv1G191400 (Zink finger protein) could be a

candidate gene underlying the q.gwas.03 QTL for PHT. Previous

research revealed that this gene is significantly associated with

improved salt tolerance and regulates stress resistance in wheat,

Arabidopsis, and other plants (Ciftci-Yilmaz and Mittler, 2008;

Ma et al., 2016). Other potential candidate genes for the PHT

QTLs include TRITD1Bv1G189370 (encoding Calcineurin B-like

protein), TRITD1Bv1G189570 (encoding Receptor-like protein

kinase), and TRITD5Bv1G0001780 (Cytochrome P450-

like protein).

The present study confirmed previously reported QTL for

SPL on chromosome 1B (q.gwas.06; 314.3–318.8 Mbp), which

was previously reported by Giraldo et al. (2016). Likewise,

putative QTL q.gwas.11 on chromosome 2A (489.5–492.5

Mbp), QTL q.gwas.12 on chromosome 2A (522.4–534.5 Mbp),

QTL q.gwas.13 on chromosome 2B (185.5–195.6 Mbp), and

QTL q.gwas.23 on chromosome 5A (526.3–534.1Mbp) were

found for this trait. These are likely to be novel QTLs since

the corresponding genomic regions are not associated with SPL

in previous studies. The potential candidate genes for the SPL

QTLs include TRITD2Av1G189490 (encoding Acyl-CoA N-

acyltransferase), TRITD2Av1G190600 (encoding Ring finger

protein), and TRITD2Bv1G109560 (encoding E3 ubiquitin-

protein ligase). A report from a previous study revealed that

E3 ubiquitin proteins have a potential role in modulating crop

productivity by influencing growth, development, and important

agronomic traits (Varshney and Majee, 2022).
5 Conclusions

In the present study, we evaluated the diverse germplasm of

Ethiopian durumwheat using multi-environment trials (MET) data

that are genotyped with the Illumina Infinium 25k wheat SNP array

to unravel genomic regions associated with its phenological and

plant architecture traits as well as grain yield and yield related traits

using GWAS. The GWAS identified 44 significantMTAs, including

26 novel genomic regions. The combined analysis of variance

revealed significant effects of genotype, environment, and

genotype-by-environment interaction on the target traits. The

study also confirmed several previously reported QTLs. The

identification of a large number of novel QTLs in this study

indicates the presence of novel alleles of the genes underlying

these QTLs, which probably confirms the distinctness of the

Ethiopian durum wheat gene pool from other durum wheat gene

pools. The major significant QTLs, such as q.gwas.21 (for SNP

IAAV3365, stable across location) that explained 44.95% of the

variation in grain yield, q.gwas.10 (for SNP Kukri_rep_c73477_888)
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that explained 32.9% of the variation in days to maturity and

q.gwas.28 (for SNP Kukri_c60966_261) that explained 30.7% of the

variation in the grain-filling period are the key findings of this study.

Additional research is needed to validate these key findings,

including fine mapping to determine the underlying genes and

their subsequent functional analysis. The addition of SNP markers

associated with the target traits of this study is highly beneficial for

genomic-led breeding of durum wheat.

The results could empower the sustainability of durum

breeding by unlocking genomic regions governing complex plant

characteristics. Most importantly, the results obtained in the present

study could contribute a major role in understanding the durum

wheat genome and improving genetic resources for breeding this

crop, which in turn, supports global food security. The newly

identified genes will also advance the understanding of genomic

regions associated with essential characteristics used in durum

wheat breeding. The identified novel variants suggest a potential

use of Ethiopian durum wheat in durum wheat marker-assisted

breeding. The study also provided new insight into the genetic

architecture of grain yield and related traits. It indicated the

potential of the diverse Ethiopian durum wheat gene pool for

future improvement programs. Hence, the identified MTAs and

candidate genes could be used to understand the genetic basis of

genomic regions of important traits and to accelerate the

development of new cultivars with high grain yield and

agronomically essential traits via precision breeding. In addition,

the identifiedMTAs could be used in marker-assisted breeding, fine

mapping, and cloning of the underlying genomic regions and

putative QTLs in durum wheat germplasm.
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SUPPLEMENTARY TABLE 2

Description of mean monthly weather information of test sites during

crop growing season.

SUPPLEMENTARY TABLE 5

Computed physical distance at which mean linkage disequilibrium decay

drops below at cut off (r2 = 0.2) value on pairwise comparison of
SNP markers.

SUPPLEMENTARY TABLE 6

GWAS complete output for phenological, plant architecture, grain yield,

and yield-related traits across five test sites and combined data. “Trait”
indicate measured phenotypic data including; DTH, Days to heading;

DTM, Days to physiological maturity; NET, Number of effective tillers per
plant; GFP, Grain filling period; PHT, Plant height; SPL, Spike length; SPP,

Number of spikelets per spike; TKW, Thousand kernel weight; and GYD,

Grain yield. Loc, test sites, AK, CD, HO, KU, and SN are Akaki, Chefe Donsa,
Holeta, Kulumsa, and Sinana test sites, respectively. CO; reports

combined environments data; CHR, chromosome; SNP, Single
nucleotide polymorphisms; POS, Physical position; MAF, minor allele

frequency; P.value, reports the significance of the nominal tests and
PVE, reports phenotypic variance explained. This Supplementary Table

is also presented in Excel format.

SUPPLEMENTARY TABLE 7

High-confidence candidate genes were identified through marker-trait
association analysis to associate with phenological, plant architecture,

grain yield, and yield-related traits collected at five test sites. “Trait”
indicates measured phenotypic data including; DTH, Days to heading;

DTM, Days to physiological maturity; NET, Number of effective tillers per

plant; GFP, Grain filling period; PHT, Plant height; SPL, Spike length; SPP,
Number of spikelets per spike; TKW, Thousand kernel weight; and GYD,

Grain yield. MTAs, Marker trait associations; SNPs, Single nucleotide
polymorphisms. This Supplementary Table is also presented in

Excel format.
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SUPPLEMENTARY FIGURE 1

Genome-wide LD decay plot over total physical distance based on 10,045
SNP markers. The yellow curve represents the model that fits LD decay.

The solid red line represents the arbitrary threshold for no LD used (r2 =
0.3). The light green line indicates the intersection between the critical

and the map distance to determine QTL confidence intervals.
SUPPLEMENTARY FIGURE 2

The circular Manhattan and Q-Q plots of GWAS results for DTH on panels (A,
B), and DTM on panels (C, D) were produced using each test site and

combined data across test sites. The circular Manhattan plots represent the
relative positions of the SNP markers on each chromosome in a circular

manner. To view the significantMTAs results,move fromoutside to the center

of each circle, rotating (rounding) through each circle starting from
FarmCPU.CO.DTH, followed by FarmCPU.SN.DTH, FarmCPU.KU.DTH,

FarmCPU.HO.DTH, FarmCPU.CD.DTH, and FarmCPU.AK.DTH to the center
of the circle in sequential order and follow a similar approach for DTM. The

name of test sites as stated here is presented in the center of circle. For the
QQ–plots, Y-axis represents observed–log10 (p-value), and the X-axis

represents expected–log10 (p-value) under the assumption that the p-
values follow a normal distribution. The dotted lines indicate the 95%

confidence interval assuming the null hypothesis of no association between

the SNP and trait. DTH refers to days to heading, and DTM refers to days to
physiological maturity. CO; Combined data across five environments, SN:

Sinana site, KU: Kulumsa site, HO; Holeta site, CD: Chefe Donsa site, and AK:
Akaki sites. TheCircularManhattan andQ-Qplots of GWAS results for GYDon

panel (E, F), TKW on panel (G, H), and SPP on panel (I, J) were plotted using
data from each test site and combined data from all test sites, respectively. For

the circular manhattan plot, follow a similar approach for these traits as in

Figure S2A for all test sites and traits. The assumption of QQ–plots in also
applies here. GYD, Grain yield, TKW, Thousand-kernel weight, and SPP,

number of spikelets per spike. CO; Combined data across five
environments, SN: Sinana site, KU: Kulumsa site, HO; Holeta site, CD: Chefe

Donsa site, and AK: Akaki sites. The Circular Manhattan and Q-Q plots of
GWAS results for PHT on panel (K, L), NET on panel (M, N), and SPL on panel

(O, P)were plotted using data from each test site and combined data from all

test sites, respectively. For the circular manhattan plot, follow a similar
approach for these traits as in Figure S 2A for all test sites and traits. For the

QQ–plots, apply the assumption in a. SPL, Spike length; NET, Number of
effective tillers per plant; and PHT, Plant height, and SPP. CO; Combined data

across five environments, SN, Sinana site; KU, Kulumsa site; HO, Holeta site;
CD, Chefe Donsa site; and AK, Akaki sites.
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B., et al. (2017). Genome-wide association and prediction of grain and semolina
quality traits in durum wheat breeding populations. Plant Genome. 10(3).
doi: 10.3835/plantgenome2017.05.0038

Gao, L., Meng, C., Yi, T., Xu, K., Cao, H., Zhang, S., et al. (2021). Genome-wide
association study reveals the genetic basis of yield- and quality-related traits in
wheat. BMC Plant Biol. 21(1), 144. doi: 10.1186/s12870-021-02925-7

Garcia, M., Eckermann, P., Haefele, S., Satija, S., Sznajder, B., Timmins, A., et al.
(2019). Genome-wide association mapping of grain yield in a diverse collection of
spring wheat (Triticum aestivum l.) evaluated in southern Australia. PloS One. 14
(2), e0211730. doi: 10.1371/journal.pone.0211730

Geleta, M., and Ortiz, R. (2016). Molecular and Genomic Tools Provide Insights
on Crop Domestication and Evolution. In: L. S. Donald, Editor(s). Advances in
Agronomy, Academic Press 135, 185–223. doi: 10.1016/bs.agron.2015.09.005.

Ghavami, F., Elias, E. M., Mamidi, S., Mergoum, M., Kianian, S. F., Ansari, O.,
et al. (2011). Mixed model association mapping for fusarium head blight resistance
in tunisian-derived durum wheat populations.G3 Genes Genomes Genet. 1(3), 209–
218. doi: 10.1534/g3.111.000489
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