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Abstract

Biopower, electricity generated from biomass, is a major source of renewable energy in
the US. About ten percent of US non-hydro renewable electricity in 2020 was generated
from biomass. Despite significant growth in woody biomass use for electricity in recent
decades, a systematic assessment of associated impacts on forest resources is lacking. This
study assessed associations between biopower generation, and selected timberland struc-
ture indicators and carbon stocks across 438 areas surrounding wood-using and coal-burn-
ing power plants in the Eastern US from 2005 to 2017. Timberland areas around plants
generating biopower were associated with more live and standing-dead trees, and carbon in
their respective stocks, than comparable areas of neighboring plants only burning coal. We
also detected an inverse association between the number of biopower plants and number of
live and dead trees, and respective carbon stocks. We discerned an upward temporal trajec-
tory in carbon stocks within live trees with continued biopower generation. We found no
significant differences related to the amount of MWh biopower generation within the anal-
ysis areas. Net impacts of biopower descriptors on timberland attributes point to a positive
trend in selected ecological conditions and carbon balances. The upward temporal trend
in carbon stocks with longer generation of wood-based biopower may point to a plausibly
sustainable contribution to the decarbonization of the US electricity sector.

Keywords Biopower - Woody biomass - Renewable energy - Forest inventory - Electric
power sector

1 Introduction

The decarbonization of the electricity sector requires greater reliance on renewable and
clean resources to reduce dependence on fossil fuels. Among fossil fuels, coal has been the
predominant feedstock in the US electric sector for over a century (EIA, 2021f). Over the
last decade, the quantity of electricity generated from coal has declined extensively while
consumption of other resources, including natural gas and renewable energies, has experi-
enced steady expansion. Recent forecasts suggest that coal’s share of US electricity genera-
tion is expected to fall from 19% in 2020 to 11% by 2050 (EIA, 2021a). In comparison, US
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renewable electricity generation is expected to rise from 21% of total generation in 2020 to
more than 42% by 2050 (EIA, 2021a). Among renewable electricity sources, woody bio-
mass has experienced about 40% growth over the last two decades (EIA, 2021d). In 2020,
about ten percent of non-hydro renewable US electricity generation was supplied by bio-
mass including non-wood waste (5.5%), and wood (4.5%) resources (EIA, 2021g).

Many coal-fired plants have been retired or repurposed to burn other feedstocks in
efforts to reduce dependence on fossil fuels and their carbon footprint—supported by
improved financial competitiveness of low-carbon sources. By 2020, more than 100 coal-
fired plants were converted to or replaced by natural gas-fired plants (EIA, 2020). As a
result, coal’s share of CO, emissions in the electric power sector declined from 1,828 mil-
lion tons to 786 million tons per year, while CO, emissions from natural gas grew over 50%
and reached 635 million tons per year over the last decade (EIA, 2021e). Another alterna-
tive for repurposing coal-fired plants is using biomass for fuel. This can be an appealing
alternative since biomass can be a carbon neutral energy source under certain conditions
(Sedjo, 2012). Upgrading boilers in coal-fired generating plants to burn biomass can be a
financially sound approach to advance net-zero emissions goals for the electricity sector
and support bioenergy markets (The White House, 2021; Dundar et al., 2016, 2019).

Nonetheless, the role of biopower in the decarbonization of the electricity sector can
be a contested issue. Since 2010 there has been much debate regarding carbon neutrality
when burning biomass to produce electricity (Sedjo, 2013; Walker et al., 2013; Sedjo &
Tian, 2012). For instance, the US Environmental Protection Agency (EPA) released the
first "Framework for Assessing Biogenic CO, Emissions from Stationary Sources" in order
to provide a more accurate measurement of CO, emissions from non-fossilized and biode-
gradable organic materials in 2011 (EPA, 2011). The revised EPA framework (EPA, 2014)
alongside two Science Advisory Board (SAB) reviews (SAB, 2012; 2015) were reflected in
the Clean Power Plan (CPP) Final Rule, published in August 2015, to establish an account-
ing framework for bioenergy emissions from biomass. The CPP Final Rule “recognizes
that the use of some biomass-derived fuels can play a role in controlling increases of CO,
levels in the atmosphere” (EPA, 2015). The CPP also recognizes the potential of “a wide
range of environmental benefits, including carbon benefits” for using biomass if “feed-
stocks are sourced responsibly.” The CPP Final Rule was stayed by the US Supreme Court,
and a later EPA rule (Affordable Clean Energy) did not qualify biomass used for electricity
production as a system of emissions reduction (EPA, 2019), but the suggested model in the
CPP to lower air pollutants has been applied by many US states.

Sourcing woody biomass for electricity generation can have impacts that extend beyond
its carbon footprint. For instance, removal of low value trees from high-risk wildfire
areas can provide a significant source of woody biomass (Rummer, 2005) and simultane-
ously support efforts to restore habitats and reduce risk of devastating wildfire and dis-
ease (Polagye et al., 2007; Neary & Zieroth, 2007). However, large-scale tree harvesting
changes forest structure, and can directly or indirectly alter biodiversity of both plants and
wildlife species (Cornwall, 2017; Birdsey et al., 2018). As the CPP and other studies have
suggested, the long-term benefits of using biomass for electricity generation can be main-
tained only under the creation of a sustainable cycle of CO, capture and release, and preser-
vation of forests’ biodiversity (Sterman et al., 2018; Verschuyl et al., 2011). Although there
is widespread use of biopower across the US, there is no large-scale, systematic review of
changes in forest resources associated with increases (or decreases) in wood combustion by
power plants.

We examine ex post changes in fundamental timberland structure attributes (number
of live trees and standing-dead trees) and respective carbon stocks (carbon in live and
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standing-dead trees), associated with different biopower generation intensities. Net bio-
power impacts were discerned when contrasting differences in localized areas surrounding
hundreds of wood-using electric plants against landscape areas where no biopower was
generated (Fig. 1). Timberland attributes were collected from forest inventory data contain-
ing over one hundred thousand plots measured every three years from 2005 to 2017 in the
Eastern US. This study contributes to the state of knowledge of environmental impacts of
biopower generation by: (1) developing and implementing a framework to assess changes
in timberland attributes associated with biopower generation; (2) introducing an empirical
estimation method to discern plant-specific effects within overlapping procurement areas;
(3) reviewing and identifying other significant factors related to forest changes including
wood industries, land use changes, and natural disasters.

2 Methods
2.1 Biopower procurement and control group timberland areas

We identified 211 woody-biomass-using power plants that were operational between
2005 and 2017 over 27 states in the Eastern US (Figs.1 and 2). Power plants combusting
woody biomass were found across each state in the US East with the exception of Dela-
ware, Indiana, New Jersey, and Rhode Island. Information about the power plants, includ-
ing geographical coordinates, fuel types, and annual MWh generation was collected from
the US Energy Information Administration (EIA) (EIA, 2021b, c). We selected power
plants (including combined heat-and-power facilities) that burned woody biomass includ-
ing wood/wood waste solids and liquid mixture of pulping residues from wood pulp and
paper production, i.e., wood waste liquids and black liquors. In order to obtain level of

Biopower generation 2003-2005 Biopower generation 2015-2017
(total: 76.1 million MWh) (total: 99.4 million MWh)

Generation (GWh)
O 500

© 1000
© 1500

Fig.1 Location of wood-using power plants and corresponding biopower generation in the Eastern US for
the first and last studied time window
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Analysis areas including biopower
procurement areas (BPAs) and
control group areas (CGAs)
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O Biopower procurement areas (BPAs)
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@ Total biopower generation (2003-2017) >= 2 million MWh
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A Coal-firing power plant (total biopower generation = 0)

Fig.2 Locations of 211 wood-using power plants dispersed in the Eastern US that were operational
between 2005 and 2017 and the corresponding forest ecological regions. The inset illustrates how overlap-
ping procurement zones were mapped and partitioned

biopower generation within every three-year interval starting with 2005, we have collected
EIA information from year 2003.

Our sampling approach takes into consideration woody biomass market and power
plant characteristics discerned from a review of the literature and expert validation,
as well as available data on forests and biopower generation. It is worth noting that
power plants procure woody biomass through contractors and do not engage directly
in forest management (Coffin, 2014). Moreover, there is no available database that
systematically records plant-level volumes of woody biomass (Goerndt et al., 2013)
which prompted our need to derive localized timberland conditions from available
forest inventory records and established mensuration methods (Sect. 2.3). We assess
changes in timberland attributes and carbon stocks and net of other related covari-
ates. We derive timberland conditions within procurement landscapes motivated by the
fact that the low energy density of woody biomass and its high transportation cost
severely limit the geographic area from which it is procured (Aguilar et al., 2012;
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Goerndt & D’Amato, 2014). Based on a review of the literature, we selected a procure-
ment Euclidean radius of 80 km (50 miles) for power plants having at least two million
MWh biopower generation between 2003 and 2017, and a radius of 48 km (30 miles)
for biopower plants with less than two million MWh total generation (Aguilar et al.,
2020; Goerndt et al., 2013; Perez-Verdin et al., 2008). These procurement radii take
into consideration tortuosity factors common across the US East and defined biopower
plant procurement zones (Fig. 2).

The geographical proximity of power plants results in the frequent overlap of procure-
ment zones. Hence, we partitioned the spatial region into 530 mutually exclusive and
exhaustive biopower procurement areas (BPAs) (each having at least 50 km? area). Each
BPA represents a unit of observation during our study period (Fig. 2, inset). Our control
group denoted comparable timberland landscapes where no biopower was generated during
our study period. We selected 297 power plants that solely burned coal during our study
period that were located within 128 km (80 miles) of one of the biopower plants under
consideration. We used a concentric circle of radius km (30 miles) centered at each coal-
burning power plant to define a control zone. From the overall list of candidate controls, 70
coal-burning plants were excluded due to either having their area contained entirely within
one or more BPAs, or collocation with another coal-burning plant, or multiple control
zones having tangent circles. We were left with a control zone for each of 227 coal-burning
power plants, defining 386 mutually exclusive and exhaustive control group areas (CGAs)
(each having at least 50 km? area). Taken together, BPAs and CGAs defined our analysis
areas consisting of 916 mutually exclusive areas. Within each analysis area, the impact of
the associated power plants on timberland is assumed to be homogenous. For each area
analyzed, we computed selected timberland attributes and assigned measures of biopower
generation.

2.2 Timberland attributes

We relied on forest attribute estimates from the US Forest Service’s National Forest Inven-
tory and Analysis (FIA) Program to assess the associated impacts of power plants on for-
est conditions (USDA, 2021b). FIA estimates of forest conditions consist of three phases,
including Phase 1—spatially explicit forest type and size-class estimates based on aerial
photographs and satellite imagery; Phase 2—field samples of forest attributes on inventory
plots comprising a subset of forest areas from Phase 1; Phase 3—a more detailed inventory
of forest health attributes for one out of every 16 Phase 2 sample plots. Full details about
FIA sampling, plot design, measurements and data collection are available in the FIA pro-
gram documentation (USDA, 2020; Burrill et al., 2018; Bechtold & Patterson, 2015).

We assessed fundamental timberland attributes including two forest structure attrib-
utes (i.e., number of live trees, number of standing-dead trees) and two carbon pools (i.e.,
above- and below-ground carbon in live trees, and above- and below-ground carbon in
standing-dead trees). Forest structure attributes were examined for potential concerns over
wildlife habitats and forest biodiversity; carbon pool attributes were examined in the con-
text of carbon neutrality and sustainability of timberland resources (Table 1).

We obtained estimates of timberland attributes for all BPAs and CGAs using the FIA
forest inventory query system based on power plant coordinates and desired procure-
ment radii for years 2005, 2008, 2011, 2014 and 2017. A three-year measurement interval
allowed us to capture trends in timberland attributes. We developed a Python data-scraping
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Table 1 Selected fundamental descriptors of timberland structure and carbon stocks

Attributes Description

Number of live trees (trees/km?) Number of all live trees (at least 2.54 ¢m diameter at 1.37 m
above the forest floor)

Number of standing-dead trees (trees/km?) Number of standing-dead trees (at least 12.7 ¢m in diameter at
1.37 m above the forest floor)

Carbon in live trees (tons/km?) Metric tons of carbon in aboveground and belowground
(coarse root) biomass of live trees. The estimated volumes
of wood and bark are converted to biomass based on the
density of each. Additional components (e.g., tops, branches,
and coarse roots, estimated according to adjusted component
estimates)

Carbon in standing-dead trees (tons/km?)  Metric tons of carbon in aboveground and belowground
(coarse root) biomass of standing dead trees

program to collect the most recent available data from the FIA database (Mirzaee, 2021).
Figure 3 shows the mean of the selected timberland attributes within BPAs and CGAs from
2005 to 2017.

Number of live trees Carbon in live trees
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Fig.3 Annual average values of selected timberland attributes in biopower procurement areas (BPAs) and
control group areas (CGAs)
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2.3 Estimation of timberland attributes and biopower generation within analysis
areas

To mitigate inherent dependence in timberland attributes that result from individual FIA
plots being located in multiple procurement zones and control zones, we apportion these
timberland attributes across the 916 mutually exclusive analysis areas. For procurement/
control zone i (a circular area), let h; denote the area (km?) of i and let g; denote the
level of the attribute in i. For analy51s area j (a Venn diagram subarea), let v; denote the
square kilometers of the analysis area. Let z; = 1 if area j is located W1th1n zone i; let

; = 0 otherwise. For each pair of i and j we deﬁne wy = z; X (v;/h;) denoting the pro-
portlon of zone i included in analysis area j. Now consider two cases: either j is located
in multiple zones, or j is located in a single zone i. For the first case, the level of attrib-
ute in analysis area j is calculated as:

;= min {w; X g;}. 1)

1:7;=

“if

For the second case, the remaining amount of the attribute in zone i is apportioned as:

= Z(z,j x[g; — Z 23 X B]). )
J#

We compute timberland attributes per square kilometer by dividing #; by v; to remove bias

in the estimates due to size of the analysis areas. To find the level of correspondlng bio-

power generation for the BPAs, we applied the following method. For biopower plant pro-

curement zone i, let e; denote the level of the biopower generation in i. Then, the level of

biopower generation in BPA j is calculated as:

9= 20y X e, 3)

i

Note that Eq. 3 uses a different approach than used for Egs. 1 and 2. This is because unlike
the timberland attributes, we do not have any potential over-counting of electricity genera-
tion across zones.

2.4 Explanatory variables associated with changes in timberland attributes

Changes in forest resources around wood-using power plants are caused by many factors
including forest management and policies, land use changes, forest types, natural disas-
ters, wood industries, and the power plants themselves. To have a comprehensive under-
standing, we gathered a set of explanatory variables that represent the most influential
factors related to landscape changes within the analysis areas (Table 2).

We included four variables to determine changes in timberland conditions associated
with biopower generation. These were as follows: a dichotomous variable distinguishing
biopower generators from non-biopower generators to discern overall biopower effects,
total biopower generation over each three-year forest inventory window to evaluate
effects of bioenergy generation, average years of biopower operation to control tem-
poral effects of the biopower plants’ presence, and number of biopower plants whose
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procurement zones intersect with an analysis area to estimate the effect of increased
pressure on forest resources.

Competition for fibers by other wood-using industries was also identified by considering
overlapping procurement zones of pellet and pulp mills within the analysis areas (FORISK,
2018; Johnson & Steppleton, 2007; John- son et al., 2010; Piva et al., 2014; Bentley &
Steppleton, 2013; Gray et al., 2018a, b). Commercial procurement zones, with a radius of
80 km and 120 km, were assigned to wood pellet and pulp industries. We calculated inter-
section variables by aggregating the overlap ratio between pellet or pulp mills’ procure-
ment zones with analysis areas (Fig. 4).

Natural disturbances can affect forest resources. To find the most relevant natural events,
we reviewed historical maps for wildland fires, hurricanes, tornadoes, droughts, and insects
and forest diseases in the Eastern US for 1-year lagged timepoints (USDA, 2021c). The
analysis revealed widespread severe drought in much of the Southeast in years 2007 and
2016, motivating the addition of an extreme drought variable to account for the effect of
these natural disasters (U.S. Drought Monitor, 2021) (Fig. 4). Moreover, forest vegeta-
tion types have intrinsic dissimilarities to each other causing many timberland attributes to
naturally vary from one another. To account for characteristics intrinsic to different forest
vegetation types (as shaped by weather, altitude, latitude, topography, hydrology, and site
quality), we included indicator variables for each of the four major ecological regions that
encompass our study region (Dyer, 2006).

By accounting for the human population density within the analysis areas, we included
indicators for potential forest degradation due to land use changes to developed areas. Spe-
cifically, we estimated population densities by aggregating the proportional population of
counties within analysis areas (U.S. Census Bureau, 2020b, a). We derived proportional
population estimates by multiplying counties’ populations to the ratio of the counties’ area
that lies inside the analysis area. Land use changes from forest resources to farmlands were

2005 2017

\ Drought
\>/ \y l Exceptional
) Extreme
A Pellet mills

B Pulp mills
O Analysis areas Severe

Fig.4 Location of wood pellet mills, pulp mills, and areas of reported extreme weather conditions (lagged
1 year) in 2005 and 2017
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monitored by considering cropland ratio changes. We estimated cropland ratios (USDA,
2021a) by aggregating the proportional crop acreage of counties within the analysis areas.
Exports to overseas wood pellet and other forest products markets can also impact forest
resources. We added a dichotomous variable to distinguish analysis areas that have access
to a major port exporting forest products (USDOT, 2019). Descriptive statistics and expla-
nations for the variables are given in Table 2.

2.5 Linear mixed model

We investigated the relationship between timberland attributes and variables listed in
Table 2 within the selected locations over five-time intervals. The linear mixed model
(LMM) was used to model the longitudinal data in order to capture correlation between
observations over time (Laird and Ware, 1982; Schabenberger & Pierce, 2001). The LMM
includes both fixed effects and random effects in a panel model structure. There were
p = 13 fixed effects included in our model: biopower procurement area, total biopower
generation in each three-year window, years of biopower operation, number of biopower
plants, competing pellet production intersection, competing pulp production intersection,
extreme drought, forest eco-regions (four categories), population density, cropland ratio,
and port access. We specify the LMM for each timberland attribute separately and model
each on a log-scale with normally distributed errors. Let y! denote generally one of the

estimated timberland attributes for analysis area i at time ¢t where i € {1,---,916} and
te{l,--,5}. We write the LMM as:
InG) = By + X By + D Bl + €L @
k u
and
€ =bi+e, (5)

where f, is a global intercept, v, and %, denote time-variant and time-invariant fixed
effects for uth and kth variables, respectively, b, is the analysis area-specific random effect
(for each observation, g = 916) and eg is an independent error term assumed to be normally
distributed with mean zero i.e., €, ~ N(0, 62). The capacity of our model to assess changes
within the ith analysis area, and between them, taking into consideration time variant
and invariant factors allowed discerning biopower effects when comparing BPAs against
CGA:s.

Regression parameter estimates were obtained using restricted maximum likelihood
(REML) (Harville, 1977), utilizing the /me function from the nlme package in R (R, 2021;
Pinheiro et al., 2014). Note that intercept values are computed by summation of fixed inter-
cept and mean of the random intercepts (ﬁo = By + 2., b;/q). To represent percentage of
changes on y, coefficients transformed by:

exp(ﬂj-xj)_ 1 J= {]7""17}5 (6)

where j represents any of the time variant or invariant covariates (x;) and associated coef-
ficient (f;). These values correspond to expected changes with respect to the geometrlc
means of the timberland attribute, exp(ﬁo) Note that the intercept parameter ﬂo defines
the baselevel of the model that corresponds to an analysis area containing a coal-burning
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power plant in the Southern Mixed forest region. The following transformation was applied
to find (1 — ) percent confidence intervals of timberland attributes change:

exp(Bix; £ Z_qp2) X s€;) — 1 j={1,--,p}, @)

where se; is the standard error of the estimate of coefficient j. Of particular interest in
response to our study objectives, we calculated net biopower impact by adding up the esti-
mated coefficients of variables capturing biopower plant effects. These were as follows:
biopower plant presence, years of biopower operation, and number of BPA overlaps. For
the last two variables, respectively, we estimated effects at 20 years of operation and a BPA
with one additional overlap.

To evaluate the proposed LMM, we compare it to two other modified forms of the
model. The first model (M1) is a simplified version of the model where we remove the
random effects resulting in a more traditional linear model and is fitted with ordinary least
squares. The second model (M2) incorporates an autoregression correlation structure and
is fitted using generalized least squares. The LMM outperforms M1 in terms of lower
residual standard deviation as well as AIC and BIC values. The LMM results are close
to M2 in terms of these metrics of comparison while it has a significantly lower sum of
squared residuals (Appendix A, Fig. Al). Therefore, we chose the LMM over the M2 as it
is more parsimonious.

3 Results

Estimated coefficients, p values, and standard errors from the Linear Mixed Model are pre-
sented in Appendix A (Table Al). Next, we present the estimated changes of timberland
attributes in analysis areas, calculated by Eq. 5, for statistically significant (p value < 0.05)
outcomes. Corresponding estimated changes, confidence intervals and p values are shown
in Fig. 5.

The number of biopower plants within analysis areas was negatively associated with the
number of trees and corresponding carbon pools (Fig. 5a). For instance, the presence of
two biopower plants in analysis areas was associated with approximately 20 percent lower
number of live and standing-dead trees and their respective carbon pools. In contrast, the
results show carbon pool in live trees to be positively related to the average years of opera-
tion of biopower plants. Expected number of carbon stocks in live trees would increase 20
percent, for every 20-year continued biopower plants’ operation. Moreover, we observed a
greater number of live and dead trees and higher associated carbon stocks in the analysis
areas supporting biopower generation. The results show about 60 and 40 percent more live
and dead trees and about 15 and 30 percent higher associated carbon pools in the BPAs
(Fig. 5b). We did not find a significant correlation between level of biopower generation
and level of timberland attributes within the analysis areas.

Our results show relatively small effects of fiber competition between biopower
plants and wood pellet and pulp industries. We estimated a 2 percent reduction in
the number of standing-dead trees and about 2 percent increase in carbon stocks in
live and dead trees within analysis areas containing a wood pellet mill procurement
zone. The presence of a pulp mill also resulted in a 2 percent decrease in the estimated
number of live trees and about 1 percent reduction in carbon in live and dead trees.
Moreover, we detected an inverse association between proximity to an exporting port
and the number of live trees and carbon in live trees. We estimated about 10 percent
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Fig.5 Estimated changes, 95% confidence intervals (CI), and p values for a continuous variables capturing
effects of power plants operation, population density, and cropland ratio, and b dichotomous variables for
BPAs, severe weather condition, access to export market, and differences within forest regions (FR)

decrease in the number of live trees and carbon in live and dead trees in the analysis
areas within 100 km of an exporting port. We also estimated a 2 percent increase in the
number of standing-dead trees in analysis areas that experienced drought in the pre-
ceding year (Fig. 5b).

An increase in human population density within analysis areas was also found to
have important associations with the number of live and dead trees, but not significant
on the respective carbon pools. An increase in population of 100 per km? was asso-
ciated with an estimated 15 percent decrease in live and dead trees. Croplands also
showed significant impacts in our attribute estimates. A 10 percent increase in crop-
land area within the analysis areas resulted in an estimated 5 and 20 percent decrease
in number of live and standing-dead trees and approximately 5 and 10 percent decrease
in carbon pools in live and dead trees, respectively (Fig. 5a).

Results also indicate that the level of timberland attributes may vary significantly
among different ecological regions. For instance, we expect three times more stand-
ing-dead trees in the Northern Hardwoods ecological region than the Southern Mixed
region. The presence of large and significant estimated values for forest regions sug-
gests the ability of the model to discern timberland attribute differences across differ-
ent geographical areas. Figure 6 compares the estimated changes in timberland attrib-
utes due to biopower plant activity, including areas supporting biopower generation,
presence of two biopower plants, and 20 years of operation of biopower power plants.
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Fig.6 Estimated changes and p values for analysis areas supporting biopower generation, containing two
biopower plants and 20 years of biopower operation, with average net bioenergy impact

4 Discussion

Electricity generation from woody biomass in the Eastern US increased more than 30%
from 2005 to 2017 (EIA, 2021b). Many concerns regarding using woody biomass for elec-
tricity generation relate to the sustainability of its procurement including potential impacts
to forest structure and biodiversity (Kline et al., 2021a). Declines in the number of live and
standing-dead trees can point to unsustainable forest management practices that may lead
to changes in forest structure that affect plant and wildlife diversity. Lower carbon levels
in live and dead trees might call into question the capacity of woody biomass for energy to
support decarbonization.

Here, we found wood-using power plants did not have a negative net impact on the num-
ber of live and dead trees and corresponding carbon stocks. Our statistical analyses suggest
that BPAs had a higher number of trees and carbon pools in comparison to CGAs (Fig. 6).
Our ex post analysis also shows that both number of live trees and level of carbon in live
trees experienced growth from 2005 to 2017 within the BPAs (Fig. 3). We detected a sig-
nificant increase in the level of carbon in live trees as the years of biopower plants opera-
tion increased. This suggests that the carbon neutrality of biopower generation can be more
likely achieved over longer time horizons.

Lack of a strong correlation between level of biopower generation and timberland attrib-
utes changes can be interpreted as allowing for the possibility of biopower generation
expansion without violating key sustainability assumptions. Also, a negative relationship
between the number of biopower plants present in an area and the level of forest resources
can incentivize expansion of current biopower plants over building new facilities. In areas
having high quantities of woody biomass; however, a reduction in live and dead trees
through biopower in the short-term could reduce the risk of devastating wildfire and help
forest preservation (Neary & Zieroth, 2007).
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Strong inverse association of increases in population density and cropland areas with
level of the timberland attributes shows the significance of the land cover changes to more
developed and agricultural areas (Homer et al., 2020) across the analysis areas. The sub-
stantial value added to local economies by producing wood-based biomass (Dahal et al.,
2020) can play a key role in preventing forest land cover changes. If the investments and
jobs associated with biomass production can help sustain rural communities, the presence
or expansion of biopower plants can incentivize rural communities to maintain forests and
decelerate forest conversion to agriculture or developed land.

The lucrative European market for the US wood pellets industry has shaped a new
demand paradigm for forest products in the Southeastern US (Abt et al., 2014). Recent
studies on impacts of increased wood pellet production point to mostly positive effects on
level of timberland attributes while generating more affordable and clean energy (Dale
et al., 2017; Aguilar et al., 2020; Kline et al., 2021b). In this study, we detected relatively
minor yet positive impacts associated with areas located within wood pellet mill procure-
ment. With the caveat that our research was designed to assess changes within BPAs, our
results show that access to an exporting port is associated with decreased live trees and
carbon pools in the studied timberland areas. Although the studied areas are mostly used
by domestic power plants, the lower level of the timberland attributes near exporting ports
can reflect an effect of more competition for producing wood-based biofuel for both local
and European markets.

Shifting from coal to clean sources of energy to decarbonize the national economy is
a stated goal for the US electricity sector. With current technologies, simply repurposing
coal-fired plants to use natural gas would likely not significantly cut carbon emissions in
the long term. EIA projections show that by 2050 energy-related carbon emissions from
natural gas combusting could exceed 2010’s level of emissions from coal (EIA, 2021a).
Biomass can be a renewable source of energy in the transitional path toward zero-emit-
ting renewable energy technologies. Moreover, woody biomass procurement can facili-
tate forest restoration and management objectives by providing markets to help offset the
cost of removing low value trees in conjunction with silvicultural prescriptions intended
to improve forest health, diversity, resilience, and fire resistance. This is the most likely
market-based mechanism underpinning the net growth in carbon stocks over time detected
in our study.

5 Conclusions

Analysis of timberlands in the Eastern US between 2005 and 2017 within areas surround-
ing wood-using and non-wood-using power plants indicates net positive trends in timber-
land structure and carbon stocks near to wood-using power plants. Areas supporting bio-
power generation showed more live and dead trees and carbon in their respective pools,
than neighboring areas around coal-burning power plants. Biopower procurement areas
also showed an upward temporal trend in the level of carbon pools in live trees. Conversely,
analysis areas with a greater number of biopower plants were associated with fewer live
and dead trees and less carbon in their corresponding stocks. The amount of MWh bioen-
ergy generation was not significantly correlated to timberland attribute changes. Positive
net effects associated with biopower plants may point to the potential of using woody bio-
mass to support decarbonization goals for the electricity sector, and its prospective role in a
transitional path toward zero-emitting renewable energy.
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Appendix A

See Table Al.

Table A1 Regression coefficients (log-transformed) of bioenergy generation, wood competition, extreme
weather, forest ecological regions, population density, cropland ratio, and export, along with standard errors

(SE), and p values (n = 4580)

Number of live trees (trees/km?)

Number of standing-dead trees
(trees/km?)

Coeft. [p value] SE Coeft. [p value] SE
Intercept 11.5059 [<0.001] 0.082 6.9393 [<0.001] 0.076
Biopower plant 0.4464 [<0.001] 0.090 0.3116 [<0.001] 0.081
Total gen. in 3-year window —0.0001 [0.009] 0.000 0.0000 [0.747] 0.000
Yrs. of biopower operation —0.0007 [0.121] 0.000 —0.0008 [0.337] 0.001
Num. of biopower plants —0.0960 [0.002] 0.031 —0.1142 [<0.001] 0.028
Wood pellet mills intersection —0.0014 [0.642] 0.003 —0.0223 [<0.001] 0.006
Pulp mills intersection —0.0212 [<0.001] 0.003 0.0062 [0.280] 0.006
Drought —0.0013 [0.782] 0.005 0.0216 [0.029] 0.010
FR: Beech-Maple-Oak —1.3187 [<0.001] 0.089 0.1514 [0.061] 0.081
FR: Mesophytic —0.3144 [<0.001] 0.081 0.6685 [<0.001] 0.072
FR: Northern Hardwoods 0.2966 [<0.001] 0.074 1.3165 [<0.001] 0.066
Population density —0.0015 [<0.001] 0.000 —0.0018 [<0.001] 0.000
Cropland ratio —0.4915 [<0.001] 0.107 —2.5946 [<0.001] 0.174
Exporting port access —0.1200 [0.030] 0.055 —0.0228 [0.644] 0.049

Carbon in live trees (tons/km?)

Carbon in standing-dead trees
(tons /km?)

Coeft. [p value] SE Coeft. [p value] SE
Intercept 8.1790 [<0.001] 0.078 4.8848 [<0.001] 0.075
Biopower plant 0.1418 [0.095] 0.085 0.2980 [<0.001] 0.083
Total gen. in 3-year window 0.0000 [0.859] 0.000 0.0000 [0.606] 0.000
Yrs. of biopower operation 0.0087 [<0.001] 0.000 0.0010 [0.002] 0.000
Num. of biopower plants —0.1149 [<0.001] 0.029 —0.1108 [<0.001] 0.029
Wood pellet mills intersection 0.0165 [<0.001] 0.003 0.0082 [<0.001] 0.002
Pulp mills intersection —0.0084 [0.002] 0.003 —0.0122 [<0.001] 0.002
Drought —0.0017 [0.716] 0.005 0.0008 [0.831] 0.004
FR: Beech-Maple-Oak —0.7806 [<0.001] 0.084 —0.2787 [<0.001] 0.082
FR: Mesophytic 0.1123 [0.144] 0.077 0.3873 [<0.001] 0.075
FR: Northern Hardwoods 0.0773 [0.269] 0.070 0.9562 [<0.001] 0.068
Population density 0.0003 [0.082] 0.000 —0.0003 [0.094] 0.000
Cropland ratio —1.0738 [<0.001] 0.101 —0.6942 [<0.001] 0.082
Exporting port access —0.1730 [0.001] 0.052 —0.1133[0.026] 0.051
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Fig. A1 Residuals versus fitted values for M2 and LMM models
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