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Abstract
1. Responses to climate change have often been found to lag behind the rate of 

warming that has occurred. In addition to dispersal limitation potentially restrict-
ing spread at leading range margins, the persistence of species in new and unsuit-
able conditions is thought to be responsible for apparent time- lags.

2. Soil seed banks can allow plant communities to temporarily buffer unsuitable en-
vironmental conditions, but their potential to slow responses to long- term climate 
change is largely unknown. As local forest cover can also buffer the effects of a 
warming climate, it is important to understand how seed banks might interact 
with land cover to mediate community responses to climate change.

3. We first related species- level seed bank persistence and distribution- derived cli-
matic niches for 840 plant species. We then used a database of plant community 
data from grasslands, forests and intermediate successional habitats from across 
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1  |  INTRODUC TION

Ongoing changes in the climate system are having profound 
effects on the Earth's ecosystems. Species are shifting their 
ranges poleward and to higher altitudes (Chen et al., 2011; Kelly 
& Goulden, 2008), the timings of life- history events are shifting 
(Parmesan & Yohe, 2003; Wolkovich et al., 2012) and populations 
are going locally extinct (Wiens, 2016). Changes at the individ-
ual and population level are in turn reflected in changes at the 
community level, with species that are associated with warmer cli-
mates increasing at the expense of those species associated with 
cooler climates (Auffret & Thomas, 2019; De Frenne et al., 2013; 
Devictor et al., 2012; Fadrique et al., 2018). However, the re-
sponses that species and communities exhibit following climate 
change do not always follow this expected pattern, or are slower 
than would be predicted from the magnitude of warming that has 
occurred (Ash et al., 2017; Becker- Scarpitta et al., 2019; Bertrand 
et al., 2011).

The rate at which plant species respond to climate change can 
be driven both by their ability to colonise new areas, as well as by 
the extent that populations are able to persist after local condi-
tions have become climatically unsuitable (Alexander et al., 2018). 
Both of these responses can be related to the species' potential to 
disperse. Studies of changes in plant communities over time have 
shown that nonnative species and other cosmopolitan general-
ists with large or expanding ranges have increased their distribu-
tions during the past decades (Auffret & Thomas, 2019; Finderup 

Nielsen et al., 2019; Staude et al., 2020), presumably via effec-
tive spatial dispersal. Nonetheless, the rate at which the climate 
is changing means that even species that are able to disperse long 
distances may still be limited when it comes to the possibility to ef-
fectively track their shifting climatic niche (Alexander et al., 2018; 
González- Varo et al., 2021).

While dispersal limitation in space might restrict some spe-
cies' ability to effectively expand their distributions in a warming 
climate, dispersal through time in seed banks could potentially 
contribute to local persistence of cold- adapted populations, thus 
explaining observed slow responses that have been exhibited at 
the trailing end of species' distributions and at the community 
level. By buffering short-  and long- term environmental variabil-
ity, seed banks are considered to play an important role in plant 
population and community dynamics (DeMalach et al., 2021; 
Eriksson, 1996). As such, species that form persistent seed banks 
may have a reduced risk of local extinction following environmen-
tal change (Auffret et al., 2017), with seed bank communities often 
reflecting historical patterns of land use and management (Karlík 
& Poschlod, 2014; Plue et al., 2008). Therefore, seed banks might 
also be expected to reflect historical climatic conditions, and evi-
dence does suggest that they may contribute to the maintenance 
of species diversity in the face of climate and land- use change 
(Plue et al., 2021; Vandvik & Goldberg, 2006). However, experi-
mental studies have shown that seed bank size and richness can 
be directly negatively affected by changing climatic conditions 
(Basto et al., 2018; Eskelinen et al., 2021). It is clearly important 

Europe to investigate relationships between seed banks and their corresponding 
herb layers in 2763 plots in the context of climate and land cover.

4. We found that species from warmer climates and with broader distributions are 
more likely to have a higher seed bank persistence, resulting in seed banks that 
are composed of species with warmer and broader climatic distributions than 
their corresponding herb layers. This was consistent across our climatic extent, 
with larger differences (seed banks from even warmer climates relative to vegeta-
tion) found in grasslands.

5. Synthesis. Seed banks have been shown to buffer plant communities through 
periods of environmental variability, and in a period of climate change might be 
expected to contain species reflecting past, cooler conditions. Here, we show 
that persistent seed banks often contain species with relatively warm climatic 
niches and those with wide climatic ranges. Although these patterns may not be 
primarily driven by species' climatic adaptations, the prominence of such species 
in seed banks might still facilitate climate- driven community shifts. Additionally, 
seed banks may be related to ongoing trends regarding the spread of widespread 
generalist species into natural habitats, while cool- associated species may be at 
risk from both short-  and long- term climatic variability and change.

K E Y W O R D S
climate change, climatic debt, dispersal, plants, seed longevity, seedbank, thermophilisation
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to improve our understanding of the role of seed banks in commu-
nity responses to climate change. However, it should also be noted 
that despite evidence that seed banks can buffer communities in 
periods of environmental uncertainty, the species found in a seed 
bank are not a random subset of the species found in the herb 
layer. Instead, they represent a group of species whose persistent 
seeds are part of a specific life strategy, and which might also dif-
fer from many species in the herb layer in terms of other functional 
traits (Pakeman & Eastwood, 2013; Thompson et al., 1998).

The rate at which communities respond to warming is not only 
determined by species characteristics, but also by the extent to 
which they are exposed to climate change. Plant communities in 
different habitats are often exposed to different microclimates, 
even if they are in close proximity. For example, the buffering effect 
of forest canopies results in cooler temperatures in summer and 
milder temperatures in winter, compared to open sites (De Frenne 
et al., 2019; Morecroft et al., 1998). This is important, because the 
microclimates that plant communities experience are key deter-
minants in both the facilitation of positive responses to climate 
warming, but can also reduce climate- related extirpations that 
might be expected from the macroclimatic changes manifesting 
at larger spatial scales (Suggitt et al., 2018; Zellweger et al., 2020). 
Indeed, changes in forest cover at the local and landscape level 
have been shown to influence rates of community change over 
time through their effects on microclimatic conditions. The cool-
ing and stabilising effect of increased tree canopy or forest cover 
has been shown to reduce both establishment and extinction 
of warmer-  and cooler- adapted species respectively (Auffret & 
Thomas, 2019; De Frenne et al., 2013). Local forest cover can also 
affect relationships between soil seed banks and the herb layer 
through the effects of microclimate (Gasperini et al., 2021), and as 
such, land cover can be an important consideration when investi-
gating the effects of climate change on plant communities.

Here we assess the relationship between seed bank persistence 
and climate, and in doing so explore the role that seed bank per-
sistence in the soil may have on community responses to climate 
change. We consider the following key questions: (1) We first ask if a 
species' seed bank persistence is related to its climatic niche (calcu-
lated as the average temperature from across a species' geographic 
range). (2) We then use a dataset of seed bank and corresponding 
herb layer community plots across a climate and land cover gradient 
to calculate community temperature indices— the average species 
temperature index within a community— to ask whether seed bank 
communities consist of relatively cool- associated species compared 
to the herb layer, reflecting past, potentially cooler communities and 
slowing down community responses to climate change. Finally, (3) 
we ask whether differences in community temperature indices be-
tween the seed bank and the herb layer are related to land cover and 
macroclimate. Throughout our analyses, we consider the potential 
effects of additional plant functional traits in driving observed pat-
terns relating to species and community climatic indices in the seed 
bank and herb layer.

2  |  MATERIAL S AND METHODS

2.1  |  Data preparation

2.1.1  |  Seed bank database

We used an existing database of 2796 paired seed bank and herb 
layer presence– absence community plots from across northern 
Europe, including data from southern France to mid- Sweden and 
Norway, and from western England in the west to Estonia in the 
east (Figure S1; Table S1). The database consists of presence– 
absence occurrences from 54 original datasets, and as such re-
flects a range of sampling techniques. Nonetheless, all seed bank 
communities were sampled through the collection of soil and sub-
sequent greenhouse germination assays with the aim of quantify-
ing the long- term persistent seed bank, while the herb layer was 
assessed in relevés from the same sampling locations, with each 
individual study designed to compare communities in the seed 
bank and herb layer. Seed bank plot sizes ranged from 0.0015 to 
0.62 m2 area and 0.03 to 0.2 m depth, while time of sampling also 
varied. Vegetation relevés ranged from 0.25 to 400 m2. The data 
cover a broad temperature gradient, and the database includes 
mean annual temperature for each plot at the approximate time 
of sampling (1978- 2014) extracted from the CHELSA time- series 
database v1.2 (Karger et al., 2017, 2018). The majority of datasets 
(67%, including 85% of all plots) were collected since 2000, by 
which time European surface temperatures had already warmed 
by almost 1°C compared to preindustrial estimates (European 
Environment Agency, 2022). Each plot was also assigned to one of 
three broad land cover categories: low- intensity managed grass-
land, mature forest and intermediate successional habitats, which 
included abandoned grasslands with shrubs and young forests, 
such as postagricultural forests. These categories were spread 
across the climate gradient, with seven of the nine countries cov-
ered by the database containing plots from all three categories. A 
previous study using the database found that species richness was 
higher in the seed bank than the herb layer, and that the seed bank 
was less affected by climate and land- use variables than the herb 
layer, indicating a potential buffering effect (Plue et al., 2021).

2.1.2  |  Species' climatic niches

Species' climatic niches were taken from the ClimPlant database 
(Vangansbeke et al., 2021a, 2021b), which estimates the real-
ised climatic niches of 968 forest understorey species based on 
the climatic conditions from their European range (bordered by 
the Atlantic ocean, Arctic ocean, Ural mountains and Sahara de-
sert) averaged across the 1970– 2000 reference period. Briefly, 
scanned European range maps for each species were georefer-
enced and digitised using a geographic information system. These 
digitisations were then overlain with the WorldClim dataset (Fick 
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& Hijmans, 2017), and temperature and precipitation data from 
each species were extracted by randomly sampling one thousand 
20 × 20 km grid squares (with replacement) from within that spe-
cies' range. Because our seed bank database also included spe-
cies from open and intermediate successional habitats, we used 
the same methodology to complement the ClimPlant database 
with climatic niches for 200 additional species (i.e. all species in 
the seed bank database that were missing from ClimPlant and for 
which we could find European range maps). This way, we obtained 
climatic niches for 93% of species from the seed bank database 
(including species only observed in the herb layer). For this study, 
we extracted two temperature indices for all possible species. 
First, the mean annual temperature within the species' distribu-
tion range (hereafter species mean temperature index, where higher 
values indicate a warmer, more southerly distribution), and second 
the range of the mean annual temperature within the species' dis-
tribution range, excluding the 5% warmest and 5% coldest mean 
temperatures to avoid the influence of extreme values (hereaf-
ter species temperature range index, where higher values indicate 
a more widespread climatic distribution). Across the ClimPlant 
dataset, there was little evidence of correlation between species 
mean temperature index and species temperature range index. 
Although the metrics are somewhat related (the most widespread 
species would have a species temperature index approximat-
ing the European mean average temperature), the existence of 
(for example) narrow- ranged species in both more northerly and 
southerly regions contributes to there being only a very slight 
negative correlation between the two indices (Pearson correlation 
coefficient −0.1; Figure S2). We therefore consider the indices to 
be adequately independent for analysis purposes. When analysing 
only species that were present in the seed bank database, the cor-
relation coefficient was −0.089.

2.1.3  |  Plant functional traits

The LEDA traitbase (Kleyer et al., 2008) contains information on 
seed bank persistence for 1586 European plant species. We cal-
culated the seed longevity index (Thompson et al., 1997), which is 
the proportion of records reporting a species to have a persistent, 
compared to a transient seed bank, based on naturally buried seeds. 
As such, the metric reflects a combination of seed physiology and 
environmental conditions that can affect whether a seed persists 
in the soil. Here, we calculated for each species the proportion of 
rows in the LEDA traitbase for which it is listed as being ‘long- term 
persistent’ (at least 5 years) or ‘short- term persistent’ (between 1 and 
5 years), as opposed to ‘transient’ (less than 1 year). Rows in which 
seed bank status was ‘present’ were removed, because it was not 
possible to tell whether the seed bank was persistent or transient. 
The resulting index therefore ranges from 0 (never recorded as hav-
ing a persistent seed bank) to 1 (always recorded as having a persis-
tent seed bank).

Three additional plant traits that have been associated with 
seed bank persistence were also extracted from the LEDA trait-
base: (1) plant life span (perennial or annual, including biennial), 
whereby annual species are more often found in seed banks (Gioria 
et al., 2020; Thompson et al., 1998); (2) seed mass (mg), whereby 
smaller seeds are more likely to have higher seed bank persistence 
(Gioria et al., 2020; Hodkinson et al., 1998); and (3) seed number 
(‘per ramet, tussock or individual plant’), whereby species produc-
ing more numerous seeds are logically more likely to be detected 
in seed banks, while there is an apparent trade- off between seed 
size and seed production (Leishman, 2001). Values for each spe-
cies were calculated as the geometric mean of all available values 
for that species, to reduce the effect of extreme values.

2.2  |  Data analysis

2.2.1  |  Seed bank persistence and species 
temperature indices (Question 1)

As a first step to understand community- level climate associations 
across the seed bank and herb layer, we assessed the relationship 
between a species' seed bank persistence and its climatic niche. 
Therefore, we created two binomial generalised linear models 
(function: glm, family: quasibinomial due to overdispersion) in the 
R statistical environment (version 4.2.0; R Core Team, 2022), where 
the response variable was the seed bank longevity index calculated 
above. In the first model (Model 1a), the predictor variable was the 
species mean temperature index, and in the second model (Model 
1b), the predictor variable was the species temperature range index. 
Because our response variable (seed bank longevity index) is a pro-
portion of successes/failures (i.e. observations of seed bank persis-
tence or otherwise), the number of ‘trials’ needed to be included as 
a weight in the binomial models. For this, we used the number of 
seed bank assessments (i.e. data rows) for each species in the LEDA 
traitbase. To maximise the power of this analysis, we included all 840 
species for which both species temperature indices and seed bank 
longevity index were available, even considering species that were 
not present in the seed bank database. Statistical significance of pre-
dictor variables in generalised linear models was determined using a 
p- value threshold of 0.05.

To assess the potential correlates of other plant traits on seed 
longevity index, we reran the above models with seed bank longev-
ity index as the response variable and either species mean tempera-
ture index or species temperature range index as the predictor variable, 
this time including plant life span, seed mass and seed number as ad-
ditional predictor variables (Models 1c and d). Correlations between 
species' climatic niche values and the three additional traits identi-
fied no strong collinearity (Table S2), with the largest Pearson cor-
relation coefficients being 0.15 between species mean temperature 
index and seed mass, and −0.15 between species mean temperature 
index and plant life span (converted to binary, with annuals as 0 and 
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perennials as 1). The order of predictors in the model formulae did 
not affect the model outputs.

2.2.2  |  Comparison of community temperature 
indices between the seed bank and herb layer 
(Question 2)

In the next step, we calculated two community temperature indices 
for each seed bank and herb layer community for each plot in the seed 
bank database. First, we calculated the community mean temperature 
index (CMTI; often referred to in the literature as the community 
temperature index) as the average of the species mean temperature 
index for all species present within the seed bank or herb layer com-
munity. Second, we calculated a community temperature range index 
(CTRI) as the mean of every species temperature range index within 
a community, in which higher values indicate on average a higher 
relative number of climatically widespread species in the commu-
nity. Community indices were not weighted by abundance because 
the seed bank database only contains presence– absence informa-
tion. Although abundance- weighted community climate indices are 
useful in detecting more subtle shifts in climate- driven community 
composition (Lindström et al., 2013), the use of presence– absence 
data is also common practice in studies where abundance data are 
not available, detecting both shifts in plant communities and their 
environmental drivers (Auffret & Thomas, 2019; Lenoir et al., 2013). 
Differences in sampling area between the seed bank and herb layer 
can affect estimations of community similarity (Plue et al., 2021), but 
here we assume that the recording of species with particular climatic 
niche values is not related to the area of ground sampled. Thirty- 
three plots had seed bank or herb layer communities consisting only 
of species for which temperature indices could not be calculated, 
and were therefore excluded from the community- level analyses, 
leaving 2763 plots (Grassland: 1298, Intermediate: 864, Forest: 601).

Next, the community mean temperature index was regressed 
against the gridded (CHELSA) macroclimate mean annual tempera-
ture data for each plot to verify if a climatic control on seed bank 
and herb layer communities was present in the dataset. This was 
performed using a linear mixed effects model (function: lmer in r 
package lme4 version 1.1.29; Bates et al., 2014). Data were arranged 
so that each community occupied a separate row, that is, there were 
two data points per plot, one for seed bank and one for herb layer. 
The response variable in the model (Model 2a) was community mean 
temperature index. Fixed predictor variables were annual mean tem-
perature (at the plot) and source (seed bank or herb layer), as well 
as their interaction. This allowed us to first test for climatic control 
of the plant communities, but also whether there was a difference 
in community mean temperature index between the seed bank and 
herb layer, and whether climatic control of the community differed 
according to source. Plot identity, nested into the identity of the 
original dataset from which the plot was taken (of the 54 component 
datasets) was added as a random effect. Another model (Model 2b) 

with community temperature range index as the response, source as 
the predictor and the same random effect structure as the previous 
model tested whether seed bank and herb layer communities dif-
fered in terms of community temperature range index. Significance 
of mixed model effects was estimated using bootstrapped 95% con-
fidence intervals (CIs; R function: confint), with significant effects 
defined as CIs not including zero.

To test the potential effects of other plant traits driving tempera-
ture associations at the community level, we calculated mean val-
ues for each of the three additional traits (plant life span, seed mass, 
seed number) for the species present in the seed bank and herb layer 
in each plot. Correlation analyses showed no strong collinearity in 
average trait values across communities (Table S4). We then reran 
our two linear mixed models designed to assess differences in com-
munity thermal indices across the seed bank and herb layer, with 
community mean temperature index and community temperature range 
index as response variables. Fixed predictor variables were source 
(seed bank or herb layer), as well as the community mean values 
of each additional trait. Plot identity, nested into original dataset 
identity was included as a random effect (Models 2c and 2d). Mean 
annual temperature at the plot was not included in the community 
mean temperature index model, because we were not interested in 
climatic control of the communities in these additional analyses.

2.2.3  |  Environmental drivers of differences in 
community temperature indices (Question 3)

To explore the potential drivers of any differences in community 
temperature index between the seed bank and herb layer, we built 
a further linear mixed model (Model 3a). The difference between 
seed bank and herb layer community mean temperature index was 
the response variable (seed bank index minus herb layer index, 
with positive values indicating that the seed bank is characterised 
by warm- adapted species with higher species mean temperature 
indices relative to the herb layer). Predictor variables were land- 
use category (categorical variable with intermediate successional 
habitats as base factor for comparison) and mean annual tempera-
ture from the seed bank database, the seed bank community tem-
perature range index and the first two eigenvectors of a principal 
coordinate analysis derived from a neighbour matrix (PCNM) of the 
spatial coordinates of each plot (function: pcnm in r package vegan 
version 2.6.2; Borcard & Legendre, 2002; Oksanen et al., 2016). 
These variables were included to account for spatial autocor-
relation because the nested random effect structure above was 
not possible because there was only one row per plot in the data 
frame. The original dataset of each plot was included as a single 
random effect. Two- way interactions were included for predictor 
variables, excluding PCNM eigenvectors. In this model, numerical 
predictor variables were standardised (mean = 0 and SD = 1; R 
function: scale) to allow interpretation of both main effects and 
interactions (Schielzeth, 2010).
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3  |  RESULTS

3.1  |  Seed bank persistence and temperature 
indices (Question 1)

Comparing species' seed bank longevity indices with their tem-
perature indices revealed that species with warmer climatic niches 
(Model 1a) and those that are climatically widespread (Model 1b), are 
more likely to have a higher seed bank longevity index (species mean 
temperature index: Regression coefficient = 0.12, p < 0.001; species 
temperature range index: Regression coefficient = 0.11; p < 0.001; 
Figure 1, Table S3). Including plant life span, seed mass and seed 
number in the models together with the temperature indices re-
sulted in no significant effects on seed bank longevity index, indi-
cating that when holding other traits constant, there are no clear 
associations between each trait and seed bank persistence (Models 
1c and d; Table S3). Separate models with only one of the additional 
traits as a predictor variable confirmed previous findings that annual 
species are more likely to have persistent seeds, while there was no 
clear effect of seed mass or seed size (Models 1e– g; Table S3).

3.2  |  Comparison of community temperature 
indices (Question 2)

Both seed bank and herb layer communities appear to be subject to 
macroclimatic control, with the community mean temperature index 
being higher in plots that have higher mean annual temperatures 
(Model 2a, Regression coefficient = 0.2, CI = 0.16– 0.24; Figure 2). 
The level of climatic control did not vary between the seed bank and 
herb layer, as evidenced by the nonsignificant interaction between 

mean annual temperature and source (Model 2a, Regression coeffi-
cient = 0.003, CI = −0.01– 0.01). Contrary to our expectations, seed 
bank communities contained on average species that have warmer 
climatic ranges compared to the herb layer (Model 2a, Regression 
coefficient = 0.23, CI = 0.13– 0.36, Figure 3a), as well as species that 
were climatically more widespread (Model 2b, Regression coeffi-
cient = 0.64, CI = 0.59– 0.68; Figure 3b).

Models including community mean values of plant life span, seed 
mass and seed number showed that despite significant effects on both 
community mean temperature index (Model 2c; higher values in com-
munities containing relatively more annuals, more large- seeded spe-
cies, and species producing more seeds) and community temperature 
range index (Model 2d; higher values in communities containing rela-
tively more annuals, more large- seeded species and species producing 
fewer seeds), the pattern that seed banks contained relatively warmer 
and more widespread species remained significant (Table S5).

3.3  |  Environmental drivers of differences 
in thermal indices (Question 3)

The difference in community mean temperature index between 
the seed bank and herb layer was independent of the mean annual 
temperature, but was higher in grasslands compared to intermedi-
ate successional habitats (Table 1). Communities having a relatively 
higher representation of climatically widespread species were also 
more likely to have higher community mean temperature index in the 
seed bank than the herb layer, although this effect was smaller in 
plots with relatively higher mean annual temperatures (negative in-
teraction between temperature and seed bank community tempera-
ture range index). Significant negative interactions were also found 

FI G U R E 1 Relationships between seed bank longevity (where 0 = species always has transient seed banks, and 1 = species always has persistent 
seed banks, calculated from the LEDA traitbase) and (a) species mean temperature index (mean annual temperature across the species' range), and 
(b) species temperature range index (90% range of annual temperature from across the species' range). In each panel, grey points are individual 
species and the red line is the modelled relationship with bootstrapped 95% confidence intervals calculated from Models 1a and 1b. Note that the 
modelled relationship is from a binomial logistic regression where the trend line indicates for each value of X the probability of Y being one.
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between community temperature range index in the seed bank and 
forest and grassland habitat category. In other words, the effect of 
larger numbers of climatically widespread species in the seed bank 
that are potentially driving the pattern of warmer seed bank commu-
nities and cooler herb layer communities, was larger both in forest 
and grassland plots compared to intermediate successional habitats.

4  |  DISCUSSION

Our study of the community temperature indices of 2763 European 
seed bank and herb layer plots showed— surprisingly— that seed 
banks are associated with more warm- associated species than their 
corresponding above- ground herb layer communities. Despite the 
eco- evolutionary role of seed banks buffering periods of environ-
mental instability to allow population re- establishment, our results 
indicate that in a period of rapid climate change, rather than lagging 
behind changing plant communities, seed banks may instead have 
the potential to give plant communities a head start on the changes 
to come.

Why are species with relatively high seed bank persistence asso-
ciated with warmer climates and large climatic ranges? Studies indi-
cate that increased temperatures are likely to diminish the ability for 
species to persist in the soil for long periods due to increased seed 
damage (Ooi et al., 2009), and that higher temperatures and increased 
drought frequencies are likely to directly or indirectly impact seed 
banks negatively (Walck et al., 2011). However, it does not necessar-
ily follow that plant species with a warmer climatic niche have lower 
seed bank persistence. In Europe, southerly regions with warmer cli-
mates are also those that experience more extreme events in terms 
of heat and drought (Barriopedro et al., 2011; Spinoni et al., 2015). 
As seed bank persistence— often coupled with shorter plant life 
spans (Gioria et al., 2020; Thompson et al., 1998)— is theoretically 
more beneficial for populations in areas with higher environmental 
variability on the short term (Snyder, 2006), the capacity of a species 
to produce a persistent seed bank would therefore be a more benefi-
cial strategy in these warmer and more extreme climates with higher 
community turnover (Childs et al., 2010). Indeed, studies from arid 
regions have shown seed bank composition to be very stable over 
time, despite natural and experimental climatic variation (DeMalach 

F I G U R E  2  Relationships between 
the local macroclimate mean annual 
temperature and the community mean 
temperature index (CMTI) of (a) the 
herb layer and (b) the seed bank in 2763 
plots across Europe. In each panel, 
points are individual plots and the line 
is the modelled relationship with 95% 
confidence intervals, calculated using 
the visreg package from the outputs 
of Model 2a (version 2.7; Breheny & 
Burchett, 2017).

F I G U R E  3  Differences in: (a) community mean temperature index (CMTI); and (b) community temperature range index (CTRI) according 
to habitat category, calculated as the index of the seed bank community minus the index of the corresponding herb layer community 
(jittered coloured points). Boxes show median and interquartile range, with whiskers indicating range excluding outliers. Notches represent 
95% intervals around the median. White points indicate the mean values.
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et al., 2021; Loydi & Collins, 2021). When considering additional 
functional traits, our analyses supported this suggestion, with an-
nual species more likely to have a higher seed bank persistence, and 
communities containing a higher relative fraction of annual species 
also associated with higher values of community mean temperature 
index (Tables S3 and S5). These analyses also supported previous 
findings that larger- seeded species are generally found to be more 
common in warmer regions (Moles & Westoby, 2003; Pakeman 
et al., 2008), as we showed that higher mean values of seed mass 
were identified in communities with a higher community mean tem-
perature index. On the other hand, there is evidence that smaller- 
seeded species generally have higher seed bank persistence (Gioria 
et al., 2020; Hodkinson et al., 1998), which might be expected to 
contradict the climatic pattern. However, our species- level analy-
ses found no relationship between seed bank persistence and seed 
size, while including additional traits in our models did not alter our 
findings that seed banks had a higher community mean temperature 
index than the herb layer.

The hypothesis that species that experience a higher level of envi-
ronmental variability across their range should benefit from the ability 
to form persistent seed banks was also reflected in our finding that cli-
matically widespread species were found to have a higher seed bank 
longevity (Figure 1b). Thus, given that establishment of new individu-
als from the seed bank is an important filter for community assembly 
(Larson & Funk, 2016; Marteinsdóttir, 2014), it follows that there will 
be an accumulation of species with relatively warm and wide climatic 
ranges in the seed bank. This is reflected in our results that overall, as 
seed bank communities had a higher community mean temperature 
index and community temperature range index than the herb layer, 
even after considering mean values of other species traits that may 
be related to seed bank persistence. This means that despite common 

findings of seed bank communities reflecting historical land use and 
management (Karlík & Poschlod, 2014; Vandvik & Goldberg, 2006), 
and the potential buffering of climate effects on seed bank richness 
(Plue et al., 2021), seed bank composition (in our study based on spe-
cies presence or absence) was not found to lag behind the herb layer 
in terms of species' climatic associations and are therefore not likely to 
contribute to slow responses of plant communities to climate warm-
ing (Auffret & Thomas, 2019; Bertrand et al., 2011).

Our findings are also linked to another aspect of global change 
and its effects on plant communities. Trends of taxonomic homo-
genisation at multiple spatial scales despite increases or no net 
change in species richness (Finderup Nielsen et al., 2019; Keith 
et al., 2009) imply increases in widespread, generalist species that, 
as well as adding species to communities, are also replacing smaller- 
ranged specialists over time (Staude et al., 2020, 2022). We found 
that climatically widespread species are commonly found in the 
seed bank, and might therefore be playing a role in such commu-
nity shifts whereby anthropogenic disturbance and climatic warm-
ing are actively facilitating their establishment. Indeed, we found 
that in cooler climates, the effect of widespread species in forming 
relatively warmer communities in the seed bank compared to the 
herb layer was smaller (Table 1). That is, the potential for wide-
spread species in the seed bank to contribute to community change 
has not yet been fulfilled, perhaps due to habitat filtering. Another 
line of evidence relating widespread, seed banking species to re-
cent community change is that seed bank persistence is a trait that 
has been linked to the successful— and sometimes problematic— 
establishment of species in new regions (Gioria et al., 2021). Short- 
lived species are generally associated with ruderal life strategies 
and often colonise new areas following environmental change 
(Herben et al., 2018; Pierce et al., 2017). Our analyses showed 

TA B L E  1  Linear mixed model (Model 3a) outputs showing the effect of temperature, land use and community temperature range index 
of the seed bank on the difference between the community temperature index of seed bank and the herb layer. Arrow symbols represent 
significant positive (i.e. higher values of the predictor result in relatively warmer seed bank communities), negative or nonsignificant effects, 
as defined by whether 95% confidence intervals include zero.

Coefficient
Standard 
error t value

CI lower 
2.5%

CI upper 
97.5%

Main effects

Mean annual temperature (MAT) ↔ −0.047 0.083 −0.57 −0.20 0.11

Grassland habitat (compared to intermediate successional) ↑ 0.1 0.046 2.06 0.002 0.18

Forest habitat (compared to intermediate successional) ↔ −0.051 0.11 −0.45 −0.30 0.18

Seed bank community temperature range index (SB– CTRI) ↑ 0.15 0.026 5.91 0.10 0.20

Interaction effects

MAT:Grassland ↔ 0.11 0.07 1.55 −0.03 0.25

MAT:Forest ↔ −0.015 0.10 −0.15 −0.23 0.20

MAT:SB– CTRI ↓ −0.1 0.021 −4.77 −0.14 −0.06

SB– CTRI:Grassland ↓ −0.26 0.036 −7.05 −0.33 −0.19

SB– CTRI:Forest ↓ −0.12 0.049 −2.4 −0.21 −0.02

Spatial autocorrelation controls

PCNM 1 ↔ −0.022 0.09 −0.24 −0.20 0.16

PCNM 2 ↑ 0.13 0.05 2.46 0.03 0.24
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that annual species are more likely to have higher seed bank per-
sistence, and that at the community level are also associated with 
communities characterised by more widespread species.

This study provides novel insights into the complex role that soil 
seed banks may play in plant community change in the Anthropocene. 
In contrast to our initial expectations, seed bank composition did not 
reflect cooler (potentially past) climatic conditions, but instead con-
tained species adapted to warmer climates than the corresponding 
herb layer. This was consistent across our climatic gradient and robust 
to the consideration of additional plant functional traits related to 
seed bank persistence. We had also hypothesised that habitat would 
also play a role in the differences in community- level climate associa-
tions, related to previous findings of slow community responses to cli-
mate change in forests (Zellweger et al., 2020). Following our finding 
that seed banks contained on average warmer- associated species, an 
alternative hypothesis could be that forest communities might have 
larger differences in community mean climate indices between the 
seed bank and herb layer, as cool- related species persist in the herb 
layer and there is a lack of opportunity for disturbed soil and estab-
lishment from the (warmer) seed bank. However, we found instead 
that grassland habitats exhibited relatively larger differences in com-
munity mean temperature indices between the seed bank and herb 
layer, while forests (which are generally more resistant to invasion 
than disturbed habitats; Chytrý et al., 2008; Vilà et al., 2007) were 
found to exhibit a weaker effect of widespread species in contributing 
to warmer seed banks (negative interaction term, Table 1).

In sum, rather than contribute to the slow responses of plant com-
munities to climate change, our results indicate that warm- associated 
species with persistent seed banks may play an important role in facil-
itating community- level responses to climate warming in the future. 
However, warmer seed bank communities are not likely to reflect a 
situation where seed banks, but not herb layers, are able to respond 
to ongoing climate change. Instead, the pattern is probably a reflec-
tion of widespread generalists that naturally accumulate in the soil. 
Therefore, any contribution of the seed bank to community responses 
to climate change in the herb layer may also contribute to taxonomic 
homogenisation through the replacement of cooler, range- restricted 
species. Finally, we also show that by being relatively poor at forming 
seed banks, cool- associated species may be doubly at risk in a changing 
climate, both to the long- term shift to a warmer climate and to short 
periods of extreme conditions that may result in local extinctions.
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