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A B S T R A C T   

Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manip-
ulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to 
limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, 
metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial 
consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut 
microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of 
engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can 
be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of 
metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.   

1. Introduction 

Dysbiosis of the human gut microbiota has been indicated to be 
associated with various human diseases, such as metabolic diseases 
(diabetes, obesity)(Ridaura et al., 2013; Wang et al., 2012), inflamma-
tory bowel disease (Lloyd-Price et al., 2019), and cancer (Yu et al., 
2017). To treat diseases, many studies have attempted to reverse the 
dysbiosis of the gut microbiota in patients through fecal microbiota 
transplantation (FMT) (Suez et al., 2018) or oral supplementation with 
probiotics (Li et al., 2022a). However, the mechanisms underlying the 
efficacy of FMT in treating human diseases are unclear (Segal et al., 
2020). Particularly, a number of side effects of FMT, such as abdominal 
pain, bloating, diarrhea, stuffy nose, fever, and vomiting, have been 
shown in previous studies (De Leon et al., 2013; Suskind et al., 2015). In 
addition, traditional probiotics, such as lactic acid bacteria and bifido-
bacteria, often resulted in conflicting clinical results (Dickson, 2019; 
Feizizadeh et al., 2014), had limited therapeutic efficacy for human 
diseases (Li et al., 2022a), and even led to side effects (Suez et al., 2019). 

To address these problems, metabolic engineering has recently been 
applied to develop gut microbiota-targeted diagnostics and therapeutics 
of human diseases, including genetically modified probiotics (i.e. next- 
generation probiotics) (Kurtz et al., 2019; O’Toole et al., 2017) and 

synthetic microbial consortia with desired characteristics and functions 
(Shen et al., 2015; Tanoue et al., 2019). Metabolic engineering is a field 
that uses engineering strategies, including computational models and 
genetic tools, to investigate and manipulate microorganisms (Nielsen, 
2001; Stephanopoulos et al., 1998). Interestingly, traditional probiotics 
could be genetically engineered as live microorganism-based delivery 
systems of drugs (Chen et al., 2020) or biosensors (Daeffler et al., 2017; 
Riglar and al., 2017), which have the potential for the detection and 
treatment of diseases. 

In this review, we focus on the useful strategies, i.e. an adapted 
iterative cycle of Learn-Design-Build-Test (LDBT), for metabolic engi-
neering in the human gut microbiome. First, we introduce how we un-
derstand the roles of gut microbiota in determining human health. Then, 
we introduce different metabolic modeling approaches for microbial 
communities and compare their advantages and disadvantages. Next, 
we review the recent advances in metabolic engineering for constructing 
genetically modified probiotics and synthetic microbial consortia. 
Finally, we discuss the challenges and opportunities for applications of 
metabolic engineering in the gut microbiome field. 
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2. Strategies for metabolic engineering of the gut microbiota 

Despite many advances in our understanding of how the human gut 
microbiota functions in the past few years, the enormous complexity of 
the gut microbiome makes it difficult to directly prove its mechanisms 
and causal relationships (Li et al., 2022b). In addition, many factors 
could influence the gut microbiota, such as age (Kumar et al., 2016), 
body mass index (Yun et al., 2017), drug (Mardinoglu et al., 2016), diet 
(Wu et al., 2011), lifestyle (Olm et al., 2022), genetic factor (Gaulke and 

Sharpton, 2018) and environmental condition (Yatsunenko et al., 2012). 
In short, more studies are still needed to deeply understand the causal 
relationship between the gut microbiota and human health. Therefore, 
here we introduce an adapted iterative cycle of Learn-Design-Build-Test 
(LDBT) for engineering the gut microbiome for development of the gut 
microbe-targeted diagnostics and therapeutics of human diseases, which 
is slightly different from the typical cycle of Design-Build-Test-Learn 
(DBTL) applied in metabolic engineering. In the LDBT cycle, the 
learning process is placed in the first step before the design phase, 

Fig. 1. Iterative strategies of Learn-Design-Build-Test (LDBT) in metabolic engineering of the gut microbiota for diagnostics and therapeutics of human diseases. a. 
Key species contributing to human health can be identified by using next-generation sequencing techniques, such as amplicon sequencing, metagenome shotgun 
sequencing. b. Genome-scale metabolic models (GEMs) and community metabolic models (CMMs) can be applied not only to study the detailed metabolic capa-
bilities of key species or synthetic microbial consortia, but also to investigate interspecies interactions. For model simulations, the metabolic network is defined as a 
stoichiometric coefficient matrix S, where rows represent metabolites and columns represent reactions. Flux balance analysis (FBA) is widely used to simulate re-
action fluxes at a steady state when maximizing an objective function under given condition; c is a vector with coefficients for all reactions that specify a linear 
combination of reaction fluxes to be maximized; r is a vector with fluxes of all reactions; rlb and rub denote a vector with lower and upper bounds for all reaction 
fluxes, respectively; μ indicates objective function that is maximized to simulate metabolic fluxes. c. Genetically engineered probiotics and synthetic microbial 
consortia can be further developed using exogenous genes or gene regulatory circuits. d. The constructed microbes or synthetic microbial consortia can be finally 
tested in vitro trials, animal models and human clinic trials. 
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whereas the DBTL cycle starts from the design phase. The new cycle 
highlights the importance of determining the causality between human 
diseases and gut microbiota, which could provide knowledges and in-
sights for the design process. The LDBT strategies mainly consist of 
characterization and understanding of the gut microbiota, in silico 
design using metabolic modeling, engineering probiotics, and synthetic 
microbial consortia as well as testing their efficacy for treating human 
diseases (Fig. 1). First, we will introduce the characterization of human 
gut microbiota that can help us to understand association or causality 
between the key microbes, human health and environment. 

2.1. Characterizing the gut microbiota using next-generation sequencing 
technique 

To investigate links between the human gut microbiota and diseases, 
next-generation sequencing techniques, including amplicon-based and 
metagenome shotgun sequencing, have been widely applied for rapid 
and large-scale quantifications of the composition and function of mi-
crobial communities (Bowers et al., 2017) (Fig. 1a). Therefore, un-
precedented metagenomics data have been accumulated and a large 
number of uncultured species have been discovered from international 
projects, such as the metagenomics of the human intestinal tract (Met-
aHIT) consortium (Qin et al., 2010), the human microbiome project 
(Lloyd-Price et al., 2019), the TEDDY study (Stewart et al., 2018). This 
provides us with more insights into the mechanisms underlying the 
impact of gut microbiota on human physiology. Furthermore, compre-
hensive gene and genome resources from the human gut microbiome 
have been mined. Here, we summarize the currently constructed gene or 
genome catalogs in Table 1. Early studies have constructed gene catalogs 
consisting of millions of prokaryotic genes, including the integrated 
gene catalog (IGC) (Qin et al., 2010) and MetaHIT (Qin et al., 2010). 
Moreover, several studies have recovered over 90,000 prokaryotic draft 
genomes of human gut microbiota from shotgun metagenomic data by 
assembling sequencing reads into contigs and then performing contig 
binning (Almeida, 2019; S Nayfach, 2019). The unique children gut 
genome catalog (ELGG) was also built and included 32,277 genomes, 
encoding over 80 million protein sequences (Zeng et al., 2022). 
Recently, the number of prokaryotic genomes has been expanded to 204, 
938 in the Unified Human Gastrointestinal Genome (UHGG) catalogs 
(Almeida et al., 2021), which facilitates us to understand the mecha-
nisms of dysbiosis of the gut microbiota in human diseases. 

In addition to bacteria, the gut microbiota consists of other com-
munities, including fungi and viruses, which play key roles in the gut 
ecosystem and diseases (Flint et al., 2012). Therefore, researchers have 
also constructed the related gene and genome catalogs, such as the 

unified archaeal protein catalog (UAPC) for human gut archaeome 
(Chibani et al., 2022), the reference database for sequence-based iden-
tification of fungi (UNITE) for human gut mycobiome (Nilsson et al., 
2019), the human gut virome database (GVD) (Gregory et al., 2020). 
Compared to bacteria that account for a large majority of the gut mi-
crobial members, the population of fungi in the healthy human is small 
with a limited number of species (Hallen-Adams and Suhr, 2017). With 
the development of other high-throughput technologies, increasing 
studies have attempted to profile the gut microbiota using longitudinal 
multi-omics data, such as metatranscriptomics, metabolomics, and 
metaproteomics (Lloyd-Price et al., 2019; Zhong et al., 2019; Zhou et al., 
2019). This also has given us a more complete picture of gut microbial 
metabolism that might influence human health. 

2.2. Metabolic modeling of the human gut microbiota 

As introduced above, increasing studies have accumulated tons of 
metagenomics data that help us to understand the gut microbiota related 
to human diseases (Almeida et al., 2021; Qin et al., 2010). After iden-
tifying key gut microbes, genome-scale metabolic models (GEMs) can be 
applied not only to study their detailed metabolic capabilities, but also 
to investigate interactions between gut microbes, such as cross-feeding, 
and competition (Karlsson et al., 2011) (Fig. 1b). This has advanced our 
understanding of the gut microbiota, and has enabled rationally engi-
neering of probiotics or design the optimal synthetic microbial consortia 
for disease diagnostics and therapeutics (Fig. 1c). In the following, we 
will discuss the general workflow of how to reconstruct GEM and 
community metabolic model (CMM), respectively. 

2.2.1. A general workflow of GEM reconstruction 
GEMs comprise a set of biochemical reactions catalyzed by the cor-

responding enzymes in an organism. To reconstruct the GEM of an or-
ganism of interest, the gene-protein-reaction (GPR) associations need to 
be extracted first, based on its genome as well as the mapped gene 
annotation from a number of biochemical reaction databases such as 
MetaCyc (Caspi et al., 2018), KEGG (Kanehisa et al., 2016) and BIGG 
(King et al., 2016) (Fig. 2a). There are several widely used tools for 
model reconstruction and analyses, such as COBRA (Becker et al., 2007), 
RAVEN (Agren et al., 2013), Model SEED (Henry et al., 2010), KBase 
(Arkin et al., 2018), and CarveMe (Machado et al., 2018), which could 
automatize many steps of the reconstruction and generate an initial draft 
model with the collected GPRs associations. A detailed protocol for 
model reconstruction was also summarized in the previous review 
(Thiele and Palsson, 2010). 

Due to missing annotations, incorrect biomass synthesis reaction or 
thermodynamically infeasible reactions, these generated draft models 
always have inaccurate phenotypic predictions and need to be manually 
curated and refined, such as parameter optimizations for biomass re-
action, addition of exchange or transport reactions and gap filling 
(Fig. 2a). Once the reconstruction of a GEM is completed, it can be used 
for simulation using the concept of flux balance analysis (FBA) (Orth 
et al., 2010), where all biochemical reactions in the GEM are formulated 
as a stoichiometric coefficient matrix S with rows representing metab-
olites and columns representing reactions (Fig. 1b). Through FBA, re-
action fluxes at the steady state can be predicted when maximizing an 
objective function under a certain number of constraints, which has 
been formulated mathematically as shown in Fig. 1b. Hereby the 
metabolic capability of species can be investigated, such as growth rate, 
targeted product or by-product synthesis. For instance, pan/core GEMs 
of probiotic Limosilactobacillus reuteri were reconstructed and used to 
analyze the metabolic characteristics and phenotypic diversity among 
different strains (Luo et al., 2021). 

2.2.2. Community metabolic modeling in human gut microbiota 
Community metabolic modeling mainly consists of three steps: 1, 

identification of relevant species by metagenomic data analysis; 2, 

Table 1 
The existed gene and genome catalogs of human gut microbiome.  

Databases Gene num. 
(million) 

MAG 
num. 

Sample num. Citation 

MetaHIT ~3.3 – 124 Qin et al. (2010) 
IGC ~9.9 – 1267 Li et al. (2014) 
ELGG >80 32,277 6122 Zeng et al. (2022) 
HGM – 60,664 3,810 (S Nayfach, 

2019) 
MGS – 92,143 11,850 Almeida (2019) 
UHGG >170 204,938 Public 

databases 
Almeida et al. 
(2021) 

UAPC ~1.8 1,167 691 Chibani et al. 
(2022) 

GVD – 33,242 2,697 Gregory et al. 
(2020) 

Note: MAG: metagenome-assembled genome; MetaHIT: metagenomics of the 
human intestinal tract; IGC: the integrated gene catalog; ELGG: early-life gut 
genomes catalog; HGM: the global human gut MAG; MGS: the metagenome 
species; UHGG: the unified human gastrointestinal genome collection; UAPC: 
the unified archaeal protein catalogue; GVD: the human gut virome database. 
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model reconstruction of individual species within a microbial commu-
nity; 3, integration of individual species models into a CMM of the mi-
crobial consortia. Firstly, by mapping sequence reads to reference 
genomes from the National Center for Biotechnology Information 
(NCBI) Reference Sequence (RefSeq) database (Pruitt et al., 2012), or 
taxonomic marker genes, species and their abundances can be deter-
mined using metagenomic analysis tools, such as Kraken2 (Wood et al., 

2019), MetaPhlAn2 (Truong et al., 2015), mOTUs2 (Milanese et al., 
2019) (Bolyen et al., 2019; Truong et al., 2015)(Figs. 1a and 2a). Then 
the representative genome of individual species within a microbial 
community can be selected from public databases, e.g. NCBI RefSeq 
(Pruitt et al., 2012). Also, we can obtain high-quality draft genomes by 
assembling sequence reads into contigs and then performing contig 
binning (Li et al., 2015). Further, we can reconstruct draft GEMs for 

Fig. 2. Reconstruction of GEM and CMM in the human gut microbiota. a. The general workflow for metabolic reconstruction. The dashed box illustrates the pipeline 
for a GEM reconstruction, mainly consisting of the steps: I, the gene-protein-reaction (GPR) associations are collected based on the genomic contents and the public 
databases, such as MetaCyc, KEGG, generating an initial draft model; II, the draft model needs to be manually curated, such as biomass reaction adjustment, addition 
of exchange or transport reactions and gap filling; III, after a series of refinements, a finalized GEM is achieved with a complete metabolic network that could convert 
substrates into biomass components. For CMM, model reconstruction mainly consists of three steps: I, identification of relevant species by metagenomic data analysis; 
II, model reconstruction of individual species within a microbial community; III, integration of individual species models into a CMM of the microbial consortia. b. 
Mixed-bag model integrates all metabolic reactions from individual species within a microbial community into one cytosolic compartment and one extracellular 
compartment. The model ignores species boundaries and can be regarded as the typical GEM of a single superorganism. The blue, orange and green lines and dots 
indicate substrate uptakes. The red line indicates object function, such as biomass synthesis, target compound production. c. Compartmentalized model separates 
metabolic reactions belonging to each species by creating a cytosolic compartment specific to that species. Also, it creates a common extracellular environment 
compartment for the entire microbial community as shown in dashed box. In this way, species can interact or exchange metabolites with each other through the 
shared space. d. The commonly used constraints in CMMs for substrate uptakes and objective functions. The specific constraints are usually according to the 
taxonomic abundance profiles or experimental data. In a compartmentalized model, one lumped objective function is usually optimized, while bi-level objective 
functions have been applied in some cases. 
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individual species with complete genomes by following the general 
workflow of metabolic modeling as introduced above (Fig. 2a). 

After metabolic models of individual species are obtained, they can 
be converted into one of two types of steady-state CMMs: (i) mixed-bag 
models (Fig. 2b) or (ii) compartmentalized models (Fig. 2c). With the 
increasing availability of high-quality genomes and automatic modeling 
tools, a large number of gut microbial GEMs have been reconstructed. 
For example, the AGORA models, a set of GEMs for 773 human gut 
microbes, were semi-automatically generated using the Model SEED 
pipeline (Magnúsdóttir et al., 2017), but the quality of these models was 
found to be poor (Babaei et al., 2018). In another study, over 14,000 
metagenomic GEMs were reconstructed directly from metagenomes 
rather than reference genomes using the metaGEM pipeline (Zorrilla 
et al., 2021), which suggested that the intraspecies metabolic diversity 
could be captured by these strain-level GEMs. Further, these model re-
sources can be applied to predict metabolic capabilities or growth me-
dium for individual gut microbes or to investigate interspecies 
interactions (Fig. 1b). For instance, GEMs can be used to build a CMM of 
multi-species by integrating with gut microbial composition data from 
metagenomic sequencing, which was suggested to be feasible for eval-
uating the overall metabolic potential of the community (Kumar et al., 
2018). An overview of some reconstructed CMMs is provided in Table 2. 

2.2.3. Mixed-bag model 
Mixed-bag community models can be constructed by merging all 

metabolic reactions from individual species comprising a microbial 
community into one cytosolic compartment and one extracellular 
compartment like in a typical bacterial GEM. This approach ignores 
species boundaries and can be regarded as a single superorganism 
(Fig. 2b). Usually, these models are built by first reconstructing GEMs of 
individual species using their high-quality genomes and then building a 
mixed-bag model for the microbial community under study. For 
example, GEMs of multiple cultivable and isolated species, including 
Bacteroides thetaiotaomicro, Faecalibacterium prausnitzii, Thermosynecho-
coccus elongatus, and Meiothermus ruber, have been first reconstructed 
and then combined into mixed-bag models, which have been used to 
explore the metabolic capabilities of microbial community or in-
teractions between external environment (e.g., nutrient condition) and 
the community (Faria et al., 2016; Henry et al., 2016) (Table 2). 
Moreover, mixed-bag community models with larger sizes have been 
reconstructed, using 58 children gut bacterial GEMs (Kumar et al., 2018) 

and AGREDA models consisting of 818 GEMs of human gut bacterial 
species (Blasco et al., 2021). The AGREDA models were reconstructed 
for studying diet metabolism of the human gut microbiota, based on the 
AGORA models and 16S rRNA sequencing data. In these mixed-bag 
models, an overall biomass synthesis reaction is always created for the 
microbial community. The new biomass reaction is a reaction combining 
the individual species’ biomasses. In addition, a mixed-bag model for the 
microbial community can be reconstructed by directly annotating all 
gene content from the metagenome. For example, the HMP unified 
metabolic analysis network (HUMAnN) tool was developed to directly 
perform the metabolic reconstruction of an entire microbial community 
from metagenomic data (Abubucker et al., 2012). Overall, it is relatively 
simple to reconstruct mixed-bag community models and these models 
therefore easily scale with the number of species to be considered. Also, 
it is computationally efficient to use the model to perform different 
simulation analyses, including the prediction of growth conditions and 
synthesis of a target product or by-product for the microbial community. 

2.2.4. Compartmentalized model 
Although the mixed-bag model is adequate to predict the overall 

metabolic capability of a microbial community, it does not enable the 
investigation of interspecies interactions or metabolic exchanges, which 
can be achieved by using a compartmentalized CMM instead. Unlike the 
mixed-bag model, the compartmentalized model contains all metabolic 
reactions belonging to each species by creating a cytosolic compartment 
specific to that species (Fig. 2c). In addition, the compartmentalized 
CMM creates a common extracellular environment compartment, which 
enables species to share external metabolites and medium. In this way, 
species can interact or exchange metabolites with others through the 
shared extracellular environment. Moreover, the compartmentalized 
CMM not only maintains the biomass composition reaction of each 
species, but also creates a new lumped biomass reaction consisting of 
individual species’ biomasses for the entire microbial community. 

After completing the reconstruction of compartmentalized models, 
simulation analysis is done by applying FBA and optimizing a lumped 
biomass synthesis reaction as the objective function. The lumped reac-
tion accounts for all species’ growths and thus includes all biomass 
composition reactions of individual species comprising the microbial 
community. The relative abundance of species in the microbial com-
munity is usually used as a constraint, which formulates a weighted 
linear combination of the biomass composition reactions of individual 

Table 2 
The community metabolic models (CMMs) of gut microbes.  

Model for species Model type Simulation 
method 

Growth condition Citation 

Desulfovibrio vulgaris and Methanococcus maripaludis Compartmentation FBA Specific medium Stolyar et al. (2007) 
Bacteroides thetaiotamicron, Eubacterium rectale and 

Methanobrevibacter smithii 
Compartmentation FBA Specific medium Shoaie et al. (2013) 

Desulfovibrio vulgaris and Methanococcus meripaludis Compartmentation OptCom Specific medium Zomorrodi and Maranas (2012) 
E. coli Compartmentation cFBA Specific medium Khandelwal et al. (2013) 
Bifidobacterium adolescentis and Faecalibacterium 

prausnitzii 
Compartmentation FBA, OptCom Rich media El-Semman et al. (2014) 

EBBR and FBBR Compartmentation CASINO Specific medium Shoaie et al. (2015) 
AGORA Compartmentation MICOM Minimal medium Diener et al. (2020) 
Over 14,000 MAGs Compartmentation SMETANA Complete media (Zelezniak et al., 2015; Zorrilla 

et al., 2021) 
Bacteroides thetaiotaomicron and Faecalibacterium 

prausnitzii 
Mixed-bag and 
compartmentation 

FBA, FVA Minimal medium Faria et al. (2016) 

AGREDA Mixed-bag and 
compartmentation 

FBA Minimal medium and 20 growth 
media (diet) 

Blasco et al. (2021) 

Entire microbial community Mixed-bag HUMAnN – Abubucker et al. (2012) 
Thermosynechococcus elongatus and Meiothermus ruber Mixed-bag FBA LB or minimal medium Henry et al. (2016) 

Note: FBA: flux balance analysis; FVA: flux variability analysis; HUMAnN: the HMP unified metabolic analysis network; MICOM: microbial community; CASINO: 
community and systems-level interactive Optimization toolbox; cFBA: community flux balance analysis. EBBR: E. rectale, B. adolescentis, B. thetaiotaomicron, and 
R. bromii; FBBR: F. prausnitzii, B. adolescentis, B. thetaiotaomicron, and R. bromii; LB: Lysogeny broth; AGORA: assembly of gut organisms through reconstruction and 
analysis, including 773 human gut bacteria; MAGs: metagenome assembled genomes; AGREDA: AGORA-based reconstruction for diet analysis, including 818 human 
gut bacteria. Specific medium indicates the available media components from experiments. 
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species or limits the substrate uptake rates of the community members 
(Shoaie et al., 2013; Shoaie and Nielsen, 2014; Stolyar et al., 2007) 
(Fig. 2d). In addition to using the simplest FBA with a lumped objective 
function, a number of other modeling algorithms have been developed 
for compartmentalized CMM, such as OptCom (Zomorrodi and Maranas, 
2012), CASINO (Shoaie et al., 2015), cFBA (Khandelwal et al., 2013). 
The OptCom algorithm was performed with a bi-level objective func-
tion, which attempts not only to maximize growth rates of individual 
species (i.e. inner objective function), but also to optimize community 
growth (i.e. outer objective function) (Fig. 2d). The bi-level optimization 
algorithm to large extent simplifies the microbial community, where the 
metabolic capacity of individual species is dependent on each other. 
Thus, cFBA was proposed to consider the balanced growths between 
species comprising the microbial community. Nevertheless, the cFBA 
and OptCom algorithms are computationally limited to be applied for a 
small size of the microbial community. 

By integrating network properties into the community objective 
function, the CASINO algorithm iteratively optimizes the CMM at both 
the species level and community level, which enables simulation for a 
larger size of the microbial community, compared to the cFBA and 
OptCom algorithms. Recently, the MICOM framework was developed to 
reconstruct CMMs using AGORA models (Magnúsdóttir et al., 2017), 
which efficiently expands metabolic modeling to the whole microbial 
community (Diener et al., 2020). As introduced above, the metaGEM 
pipeline first reconstructed strain-level GEMs directly from meta-
genomes (Zorrilla et al., 2021). Then these metagenomic GEMs were 
integrated into a compartmentalized CMM for analyzing intraspecies or 
interspecies metabolic interactions, using the SMETANA framework 
(Zelezniak et al., 2015), which can evaluate flux-balanced metabolic 
exchanges in the co-occurring microbial species. 

Compared to the mixed-bag model, compartmentalized models 
require much more manual curations of individual species GEM, greater 
complexity, and more intensive computational cost, which result in 
more difficulties to scale up to larger microbial communities. However, 
the integration of species compartmentation in the CMMs not only en-
ables the investigation of interspecies interactions in detail, but also 
gains a more accurate prediction of the overall metabolic capabilities of 
the entire community. Based on the deep understanding of the key gut 
microbes related to human health through the simulation design using 
GEM or CMM, metabolic engineering approaches can be applied to 
genetically modify the related species or build synthetic microbial 
consortia (Fig. 1c), such as probiotic L. reuteri (Namrak et al., 2022) and 
the consortium of Ketogulonicigenium vulgare and Bacillus megaterium (Ye 
et al., 2014). Although there are a small number of cases successfully 
applying metabolic models for engineering of the gut microbes, these 
suggest great potential towards the development of gut 
microbe-targeted diagnostic and treatment strategies, which will be 
discussed as below. 

3. Metabolic engineering for the microbiota-based diagnostics 
and therapeutics of human diseases 

Metabolic engineering has mainly been applied to develop geneti-
cally engineered probiotics and synthetic microbial consortia (Fig. 1c), 
summarized in Table 3. Oral supplementation with the engineered mi-
crobes as drug delivery systems has the potential to detect and treat 
diseases (Öhnstedt et al., 2022; Yuvaraj et al., 2006), mainly in three 
ways: 1) producing beneficial proteins; 2) enabling biosensing in the gut; 
and 3) designing defined microbial consortia. 

3.1. Engineered microbes producing beneficial proteins for disease 
therapeutics 

Metabolic engineering has been widely applied to manipulate pro-
biotics to produce human-derived proteins that can benefit host health 
(Fig. 3a). By investigating the metabolic capability of probiotic strain 

Table 3 
List of the engineered probiotics and synthetic microbial consortia.  

Species Disease Engineering Testing Citations 

Escherichia coli Pseudomonas 
aeruginosa 
infection 

Building the 
synthetic circuit 
for both 
detection and 
treatment 

In vitro 
model 

(Gupta 
et al., 
2013;  
Saeidi 
et al., 
2011) 

Escherichia coli Colon cancer Producing BMP- 
2 protein for 
therapeutics 

In vitro 
model 
system 
(DLD-1) 

Yuvaraj 
et al. 
(2012) 

Escherichia coli Intestinal 
inflammation 

Constructing the 
synthetic circuit 
in response to 
nitric oxide for 
diagnostics 

In vitro 
model 

Archer 
et al. 
(2012) 

Escherichia coli Liver metastasis Expressing 
β-galactosidase 
for diagnostics 

Mouse 
model 

Danino 
et al. 
(2015) 

Escherichia coli Intestinal 
inflammation 

Building 
bacterial 
thiosulfate and 
tetrathionate 
sensors for 
diagnostics 

Mouse 
model 

(Daeffler 
et al., 
2017;  
Riglar 
and al., 
2017) 

Escherichia coli Phenylketonuria Expressing 
phenylalanine- 
degrading 
enzymes for 
therapeutics 

Mouse 
and 
monkey 
models 

Isabella 
et al. 
(2018) 

Escherichia coli Hyperammonemia Upregulating 
arginine 
biosynthesis for 
therapeutics 

Human 
clinical 
trial 

Kurtz 
et al. 
(2019) 

Lactobacillus 
reuteri 

Nonalcoholic fatty 
liver disease 

Secreting IL-22 Mouse 
model 

Oh et al. 
(2020) 

Lactobacillus 
reuteri 

Colitis Expressing 
chemokine 
CXCL12 

Mouse 
model 

Öhnstedt 
et al. 
(2022) 

Lactococcus 
lactis 

Crohn’s disease Producing IL-10 
protein for 
therapeutics 

Human 
clinical 
trial 

Braat 
et al. 
(2006) 

Lactococcus 
lactis 

Food allergy Producing 
murine IL-10 
protein for 
therapeutics 

Mouse 
model 

Frossard 
et al. 
(2007) 

Lactococcus 
lactis 

Colon cancer Producing scFv 
SIgA antibody 
for therapeutics 

Jurkat 
and 
Ramos 
cells 

Yuvaraj 
et al. 
(2008) 

Lactococcus 
lactis 

Inflammatory 
bowel disease 

Expressing 
elafin protein 
for therapeutics 

Mouse 
model 

Motta 
et al. 
(2012) 

Lactococcus 
lactis 

Type 1 diabetes Secreting 
proinsulin 
autoantigen and 
IL-10 for 
therapeutics 

Mouse 
model 

Takiishi 
et al. 
(2012) 

Lactococcus 
lactis 

Type 1 diabetes Secreting GAD- 
65 and IL-10 for 
therapeutics 

Mouse 
model 

Robert 
et al. 
(2014) 

Lactococcus 
lactis 

Type-2 Diabetes Producing 
glucagon like 
peptide-1 for 
therapeutics 

Mouse 
model 

Agarwal 
et al. 
(2014) 

Saccharomyces 
boulardii 

Clostridioides 
difficile infection 

Producing a 
tetra-specific 
antibody for 
therapeutics 

Mouse 
model 

Chen 
et al. 
(2020) 

Bacteroides 
ovatus 

Colitis Building the 
synthetic circuit 
for both 
detection and 
treatment 

Mouse 
model 

Hamady 
et al. 
(2010) 

(continued on next page) 
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L. reuteri KUB-AC5 under various carbon sources using its GEM, a recent 
study identified essential and preferable nutrients as well as key meta-
bolic pathway including enzymes galactohydrolase and sucrose phos-
phorylase, which were suggested to be crucial for optimizing the 
probiotic growth and metabolism (Namrak et al., 2022). This indicates 
GEMs offer a powerful platform for deciphering cell metabolisms, thus 
enabling probiotic strain optimization and engineering for the over-
production of biomass or beneficial proteins. 

A number of early studies genetically engineered Lactococcus lactis by 
expressing human-derived proteins in order to treat intestinal diseases, 
such as Crohn’s disease (Braat et al., 2006), colon cancer (Yuvaraj et al., 
2008), inflammatory bowel disease (IBD) (Motta et al., 2012) as well as 
to reverse diabetes (Agarwal et al., 2014; Robert et al., 2014; Takiishi 
et al., 2012). Also, Escherichia coli has been genetically modified with the 
delivery of bone morphogenetic protein 2, which can induce apoptosis 
of DLD-1 cells, and this was tested in an in vitro model of human colon 
cancer (Yuvaraj et al., 2012). Moreover, the probiotic Saccharomyces 
boulardii was engineered to produce a tetra-specific antibody that could 
neutralize toxins related to Clostridioides difficile infection (CDI) in 
mouse models (Chen et al., 2020), indicating the potential of yeast 
immunotherapy. These studies suggest that metabolic engineering has 
the potential to modify probiotics as drug delivery systems for 
non-invasive disease therapeutics. 

In addition, metabolic engineering has been applied to genetically 
modify probiotics to reduce metabolites that are detrimental to human 
health, by expressing related enzymes. For example, to treat phenylke-
tonuria, E. coli was engineered to express phenylalanine-metabolizing 
enzymes in the mammalian gut, which efficiently degraded phenylala-
nine that is toxic for patients with this disease (Isabella et al., 2018). To 
improve hyperammonemia, another study also genetically modified 

E. coli to reduce systemic ammonia by converting it into arginine (Kurtz 
et al., 2019). These studies provide novel and feasible strategies to 
eliminate toxic metabolites by expressing the relevant enzymes and 
therefore treat toxicity or other diseases. 

3.2. Engineered microbes with biosensors for disease detection and 
treatment 

Genetically engineered microbes can also be applied for diagnostic 
purposes (Fig. 3b). In an early study, E. coli was built to sense and 
respond to the presence of the mammalian inflammatory signal nitric 
oxide by integration of a synthetic gene regulatory circuit in an in vitro 
model (Archer et al., 2012). Moreover, probiotic E. coli was incorporated 
with a thiosulfate or tetrathionate sensor that can respond to colitis in 
mice (Daeffler et al., 2017; Riglar and al., 2017). Interestingly, an 
engineered E. coli expressing β-galactosidase was applied to detect liver 
metastasis (Danino et al., 2015), by producing easily detectable signal 
luciferin in urine. Here, luciferin was degraded from the combined 
molecule of luciferin and galactose, which was fed to mice and catalyzed 
by β-galactosidase. 

In addition, probiotics can be engineered with a synthetic genetic 
system for both detection and treatment of diseases. For example, 
several studies have genetically engineered E. coli to first sense Pseu-
domonas aeruginosa infection through its quorum-sensing molecule N-3- 
oxododecanoyl homoserine lactone (3OC12-HSL) (Gupta et al., 2013; 
Saeidi et al., 2011). The engineered E. coli then responds to the signal 
molecule by producing an engineered chimeric bacteriocin or pyocin 
that can specifically kill P. aeruginosa for therapeutic purposes. More-
over, several studies have genetically modified the gut bacterium Bac-
teroides ovatus to sense the presence of xylan, and then secrete the 
relevant biologically active molecules, such as human keratinocyte 
growth factor-2, transforming growth factor-β1, murine interleukin-2, 
for treatment of intestinal disorders (Farrar et al., 2005; Hamady 
et al., 2010, 2011). These reports suggest that metabolic engineering of 
probiotics with sensors enables us to develop novel disease diagnostics 
and therapeutics in a metabolite-inducible manner. 

3.3. Synthetic microbial consortia 

The fast development of metabolic engineering also enabled the 
construction of synthetic microbial consortia as reviewed early 
(Vázquez-Castellanos et al., 2019), which extends genetic modifications 
from single probiotics to the multi-species microbial community. 
Through simulation analysis of interspecies interactions using commu-
nity metabolic modeling, researchers have designed and constructed 
synthetic microbial consortia, mainly applied in industrial biotech-
nology. For example, a previous study used a CMM to investigate the 
co-culture of Ketogulonicigenium vulgare and Bacillus megaterium for 
producing vitamin C (Ye et al., 2014). The metabolic simulation suggests 
that B. megaterium possibly boosts K. vulgare growth and biosynthesis of 
vitamin C precursor 2-keto-l-gulonic acid (2-KLG) via supplying essen-
tial growth factors and nutrients. This was consistently observed in the 
further experiment where the K. vulgare growth rate and 2-KLG pro-
duction were both increased in the co-culture compared to the 
mono-culture. This study confirms utility of the metabolic model for 
designing synthetic microbial consortia. 

A recent study designed artificial microbial consortia consisting of 
100 commensals, which could regulate the composition and function in 
an in vitro colon model of the gut microbiota of the elderly (Perez et al., 
2021). The alterations in gut microbiota were related to the increased 
level of branched-chain amino acids that can benefit the elderly. 
Moreover, increasing studies have designed and constructed various 
synthetic microbial consortia of human gut commensals, which have 
been shown to be safe and efficient for the treatment of patients with CDI 
in a human clinical trial up to 6 months (Petrof et al., 2013), for cancer 
immunotherapy by inducing interferon-γ-producing CD8 T cells in mice 

Table 3 (continued ) 

Species Disease Engineering Testing Citations 

Bacteroides 
ovatus 

Colitis Building the 
synthetic circuit 
for both 
detection and 
treatment 

Mouse 
model 

Hamady 
et al. 
(2011) 

Bacteroides 
ovatus 

Intestinal disorder Building the 
synthetic circuit 
for both 
detection and 
treatment 

In vitro 
model 

Farrar 
et al. 
(2005) 

33 gut 
commensals 

Clostridioides 
difficile infection 

Developing the 
microbial 
consortia for 
therapeutics 

Human 
clinical 
trial 

Petrof 
et al. 
(2013) 

8 gut 
commensals 

Hyperammonemia Developing 
consortia with 
minimal urease 
gene content for 
therapeutics 

Mouse 
model 

Shen 
et al. 
(2015) 

11 gut 
commensals 

Cancer Inducing 
interferon- 
γ-producing 
CD8 T cells for 
therapeutics 

Mouse 
model 

Tanoue 
et al. 
(2019) 

7 gut 
commensals 

Intestinal disorder Engineering 
propionate- 
producing 
microbial 
consortia for 
therapeutics 

In vitro 
model 

El Hage 
et al. 
(2019) 

100 gut 
commensals 

Aging Controlling 
composition and 
function of gut 
microbiota for 
therapeutics 

In vitro 
colon 
model 

Perez 
et al. 
(2021) 

Note: BMP: bone morphogenetic protein 2; DLD-1: human colon cancer cell line; 
scFv: single chain variable fragments; SIgA, secretory IgA; IL-22 (10): the 
cytokine interleukin-22 (10); GAD: glutamic acid decarboxylase. 
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tumor models (Tanoue et al., 2019), for restoration of antibiotic-induced 
dysbiosis by engineering of the consortia with producing propionate (El 
Hage et al., 2019) (Fig. 3c). To treat hyperammonemia, researchers also 
constructed synthetic microbial consortia consisting of 8 bacteria with 
minimal urease gene content (Shen et al., 2015), which showed that 
transplantation of the defined microbial consortia caused a decrease in 
fecal urease activity and ammonia production. These studies suggest 
that metabolic engineering has the potential to develop synthetic 
multi-species microbial communities feasible and efficient for reversing 
dysbiosis of the gut microbiota and disease therapeutics. 

Last but not least, these engineered probiotics or synthetic microbial 
consortia could be further tested in vitro models (Gupta et al., 2013; 
Saeidi et al., 2011), animal models (Daeffler et al., 2017; Riglar and al., 
2017) and even human clinic trials (Braat et al., 2006; Kurtz et al., 2019) 
for their performance evaluation (Fig. 1d). Based on the results obtained 
from testing, researchers could learn from the data and make further 
modifications to the design process. This iterative LDBT cycle is repeated 
until the desired function is achieved with high efficiency. 

4. Challenges and future perspectives for metabolic engineering 
of the gut microbiota 

Although metabolic engineering has been increasingly applied in the 
gut microbiota related to human health, there are still a number of 

challenges that need to be addressed. One of the challenges is to first 
identify the unambiguous causality between the gut microbiota 
composition and function and human diseases. Associations between the 
gut microbiota and a unique disease have often been shown to be 
inconsistent across different studies(Karlsson et al., 2013; Wang et al., 
2012), which could be caused by various factors, such as drug intake 
(Mardinoglu et al., 2016), diet (Wu et al., 2011), ethnicity (Gaulke and 
Sharpton, 2018), geography (Yatsunenko et al., 2012), age (Kumar 
et al., 2016), and lifestyle (Olm et al., 2022). Therefore, when con-
ducting experiment design and analyses, researchers should take these 
factors into account, and perform integrative analysis of complex data 
including multi-omics, dietary composition, and clinic data. Another 
challenge could be that the vast majority of studies are based on fecal 
samples, whereas many important microbial metabolisms and in-
teractions have taken place in the proximal colon or ileum (Kastl et al., 
2020). Addressing these issues will help to elaborate on the underlying 
links between human diseases and gut microbiota. 

GEM is a powerful tool for studying the metabolisms of microor-
ganisms. Recently, there is an increasing interest to reconstruct enzyme- 
constrained metabolic models (Domenzain et al., 2022; Sánchez et al., 
2017), which have incorporated enzyme’s abundance, turnover number 
or proteomics data, and improved the phenotypic predictions. These 
GEMs can be further used to construct a CMM of the gut microbiota for 
simulating its metabolic potential or interspecies interactions (Faria 

Fig. 3. Engineered probiotics and synthetic microbial 
consortia for disease diagnostics and therapeutics. a. 
Engineered probiotics that can produce proteins 
beneficial for human health. The red dots indicate 
excreted proteins. b. Engineered probiotics that can 
respond to disease biomarker and then produce 
sensor for disease detection and treatment. c. Syn-
thetic microbial consortia that can produce beneficial 
metabolites for reversing dysbiosis of the gut micro-
biota. The green dots indicate excreted metabolites. 
The engineered probiotics or synthetic microbial 
consortia first colonize the gut and then confer the 
defined function on the microbiota.   
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et al., 2016; Karlsson et al., 2011). However, it needs to address a 
number of challenges for community metabolic modeling. A compart-
mentalized CMM is usually constructed using GEMs of hundreds of 
species comprising the gut microbiota (Magnúsdóttir et al., 2017). Thus, 
the CMM needs considerable manual curation of many draft models, 
which is time-consuming and difficult to accelerate. To overcome this, a 
human gut microbiota-specific model database, including complete 
metabolites, reactions and genes with unified and standardized ID, 
should be established, like the BIGG platform (King et al., 2016). 
Meanwhile, the database should include various detailed medium or 
dietary components like growth media defined in the MetaCyc, which 
will expand phenotypic simulations at different conditions, and thus 
accelerate model curation and refinement. As several GEM reservoirs of 
human gut microbes, such as AGORA (n = 773) (Magnúsdóttir et al., 
2017), AGORA2 (n = 7,302) (Heinken et al., 2023), metaGEM collection 
(n > 14,000) (Zorrilla et al., 2021), have been reconstructed, these 
models could be regarded as knowledge base for conveniently con-
structing CMMs. However, the quality of these models needs to be 
further evaluated and improved as discussed in an earlier report (Babaei 
et al., 2018). 

Moreover, CMMs often include a part of microbial species with little 
physiological knowledge, incomplete gene annotations or few experi-
mental data, which are required to reconstruct a high-quality model and 
can lead to limited predictive performance. To address this issue, high- 
throughput microbial culturomics technique could be used to isolate 
more strains for their detailed mechanistic studies. For example, using 
automation technology and machine learning, a recent study developed 
a culturomics framework for efficiently isolating individual bacteria 
from microbial ecosystems, by integrating imaging-based phenotypic 
data with high-resolution genomics data (Huang et al., 2023). The 
technique would help collect more experimental and mechanistic data 
for individual species, thus accelerating the reconstruction of a 
high-quality metabolic model. 

An additional challenge is to integrate the gut microbial relative 
abundances into a CMM for designing an appropriate objective function 
for the entire microbial community. To overcome this, researchers first 
need to determine the overall goal of the microbial community, such as 
maximizing biomass growth or optimizing metabolite production. Next 
process is to identify relevant species, i.e., determine which species in 
the community play a critical role in achieving the goal, involved in 
considering the metabolic capabilities of each species and how they 
interact with each other. In many cases, there will be tradeoffs between 
different species or between individual species and the microbial com-
munity. Several studies have discussed the tradeoffs as well as proposed 
different methods to incorporate them into the objective functions, such 
as cFBA (Khandelwal et al., 2013), CASINO (Shoaie et al., 2015), 
MICOM (Diener et al., 2020), which nevertheless need to be further 
validated with more experimental data. These processes are particularly 
important for the accurate predictions of microbial metabolic capabil-
ities or interspecies interactions within the community. 

The steady-state metabolic model of microbial community provides 
us insights into interspecies interactions at a snapshot of one environ-
mental condition. However, the microbial community suffers the 
compositional or functional disturbance caused by interspecies in-
teractions or varied environments. Therefore, dynamic metabolic 
modeling algorithms have been proposed (Dukovski et al., 2021; Geng 
et al., 2021; Henson and Hanly, 2014; Luo et al., 2022), which never-
theless have been limited to small-sized microbial communities, due to 
the required model parameters and computational cost. Thus, before 
performing the dynamic metabolic modeling, it is essential to identify 
and validate a small number of key species, driving key metabolisms and 
interactions in contribution to the gut microbiota-related diseases. 
Additionally, it is crucial to measure several factors, such as biomass 
growth, secreted metabolites, and consumed substrates. Then the dy-
namic model could accurately fit these measurements, providing valu-
able insights into the systems being studied. 

Metabolic modeling of the microbial community has helped re-
searchers to design and develop next-generation probiotics and syn-
thetic microbial consortia by in silico analysis of metabolic capacities and 
interspecies interactions. There are still some hurdles to overcome 
during metabolic engineering of gut microbes. Over the last decades, 
there has been a great improvement in development of the genetic tools, 
e.g., CRISPR/Cas-based genome editing tool for in vivo and in situ gene 
editing (Deltcheva et al., 2011). However, currently only a few model 
microorganisms have efficient tools for gene editing (Zheng et al., 
2022), and there are still needs to develop more efficient tools for many 
types of gut microbes. In addition, genetically engineered probiotics or 
synthetic microbial consortia as drug delivery systems could bring un-
expected results and even cause biosafety problems after getting into the 
human body (Kleter et al., 2005; Wegmann et al., 2017), which have 
thus raised controversies and concerns about their uses in clinic. 
Particularly, one challenge is the regulatory policies on genetically 
modified probiotics, which will likely be classified as drugs, and not 
dietary supplements (Venugopalan et al., 2010). One positive aspect of 
this is that there might be a higher acceptance for side effects in pro-
portion to the clinical effects, while one negative side is that there might 
be an increasing costs and time to market. Another limitation is the 
personal difference in response to probiotics or synthetic microbial 
consortia (Li et al., 2022a). Therefore, further studies using metabolic 
engineering strategies need to be performed for the identification of key 
factors that contribute to the differential responses, which might help to 
develop a personalized intervention. 

Despite the challenges, the iterative strategies of LDBT for metabolic 
engineering of the human gut microbiome hold great promise for the 
development of the gut microbe-targeted diagnostics and therapeutics of 
human diseases, which could reverse dysbiosis of the gut microbiota, 
and ultimately achieve personalized and precision medicine. 
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2021. A metabolic modeling platform for the computation of microbial ecosystems 
in time and space (COMETS). Nature Protocols 2021 16, 5030–5082. https://doi. 
org/10.1038/s41596-021-00593-3, 11 16.  

El Hage, R., Hernandez-Sanabria, E., Calatayud Arroyo, M., Props, R., van de Wiele, T., 
2019. Propionate-producing consortium restores antibiotic-induced dysbiosis in a 
dynamic in vitro model of the human intestinal microbial ecosystem. Front. 
Microbiol. 10, 1206. https://doi.org/10.3389/FMICB.2019.01206/BIBTEX. 

El-Semman, I.E., Karlsson, F.H., Shoaie, S., Nookaew, I., Soliman, T.H., Nielsen, J., 2014. 
Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and 
Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 1–11. 
https://doi.org/10.1186/1752-0509-8-41/FIGURES/5. 

Faria, J.P., Khazaei, T., Edirisinghe, J.N., Weisenhorn, P., Seaver, S.M.D., Conrad, N., 
Harris, N., DeJongh, M., Henry, C.S., 2016. Constructing and Analyzing Metabolic 
Flux Models of Microbial Communities 247–273. https://doi.org/10.1007/8623_ 
2016_215. 

Farrar, M.D., Whitehead, T.R., Lan, J., Dilger, P., Thorpe, R., Holland, K.T., Carding, S.R., 
2005. Engineering of the gut commensal bacterium Bacteroides ovatus to produce 
and secrete biologically active murine interleukin-2 in response to xylan. J. Appl. 
Microbiol. 98, 1191–1197. https://doi.org/10.1111/j.1365-2672.2005.02565.x. 

Feizizadeh, S., Salehi-Abargouei, A., Akbari, V., 2014. Efficacy and safety of 
Saccharomyces boulardii for acute diarrhea. Pediatrics 134, e176–e191. https://doi. 
org/10.1542/PEDS.2013-3950. 

Flint, H.J., Scott, K.P., Louis, P., Duncan, S.H., 2012. The role of the gut microbiota in 
nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589. https://doi.org/ 
10.1038/nrgastro.2012.156. 

Frossard, C.P., Steidler, L., Eigenmann, P.A., 2007. Oral administration of an IL-10- 
secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J. Allergy 
Clin. Immunol. 119, 952–959. https://doi.org/10.1016/J.JACI.2006.12.615. 

Gaulke, C.A., Sharpton, T.J., 2018. The influence of ethnicity and geography on human 
gut microbiome composition. Nat. Med. 24, 1495–1496. https://doi.org/10.1038/ 
s41591-018-0210-8. 
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Nielsen, J., Bäckhed, F., 2013. Gut metagenome in European women with normal, 
impaired and diabetic glucose control. Nature 498, 99–103. https://doi.org/ 
10.1038/nature12198. 

Kastl, A.J., Terry, N.A., Wu, G.D., Albenberg, L.G., 2020. The structure and function of 
the human small intestinal microbiota: current understanding and future directions. 
Cell Mol Gastroenterol Hepatol 9, 33. https://doi.org/10.1016/J. 
JCMGH.2019.07.006. 
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Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., 
Bork, P., Ehrlich, S.D., Wang, Jun, Antolin, M., Artiguenave, F., Blottiere, H., 
Borruel, N., Bruls, T., Casellas, F., Chervaux, C., Cultrone, A., Delorme, C., 
Denariaz, G., Dervyn, R., Forte, M., Friss, C., van de Guchte, M., Guedon, E., 

P. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1038/NBT.1672
https://doi.org/10.1049/iet-syb.2013.0021
https://doi.org/10.1049/iet-syb.2013.0021
https://doi.org/10.1038/s41587-023-01674-2
https://doi.org/10.1038/s41587-023-01674-2
https://doi.org/10.1038/NBT.4222
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1016/J.TIBTECH.2011.01.009
https://doi.org/10.1038/nature12198
https://doi.org/10.1038/nature12198
https://doi.org/10.1016/J.JCMGH.2019.07.006
https://doi.org/10.1016/J.JCMGH.2019.07.006
https://doi.org/10.1371/JOURNAL.PONE.0064567
https://doi.org/10.1093/NAR/GKV1049
https://doi.org/10.1155/JBB.2005.326
https://doi.org/10.3233/NHA-150002
https://doi.org/10.3233/NHA-150002
https://doi.org/10.1016/J.YMBEN.2018.07.018
https://doi.org/10.1016/J.YMBEN.2018.07.018
https://doi.org/10.1126/SCITRANSLMED.AAU7975/SUPPL_FILE/AAU7975_TABLE_S1.XLSX
https://doi.org/10.1126/SCITRANSLMED.AAU7975/SUPPL_FILE/AAU7975_TABLE_S1.XLSX
https://doi.org/10.1093/BIOINFORMATICS/BTV033
https://doi.org/10.1093/BIOINFORMATICS/BTV033
https://doi.org/10.1038/nbt.2942
https://doi.org/10.1038/s41522-022-00348-2
https://doi.org/10.1186/S12934-022-01973-4
https://doi.org/10.1186/S12934-022-01973-4
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1016/J.YMBEN.2022.12.001
https://doi.org/10.1016/J.YMBEN.2022.12.001
https://doi.org/10.1186/s12896-021-00702-w
https://doi.org/10.1186/s12896-021-00702-w
https://doi.org/10.1093/NAR/GKY537
https://doi.org/10.1093/NAR/GKY537
https://doi.org/10.1038/NBT.3703
https://doi.org/10.1038/NBT.3703
https://doi.org/10.1016/J.CMET.2015.12.012
https://doi.org/10.1016/J.CMET.2015.12.012
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1126/SCITRANSLMED.3004212
https://doi.org/10.3390/BIOLOGY11020294/S1
https://doi.org/10.1007/S002530000511
https://doi.org/10.1093/NAR/GKY1022
https://doi.org/10.1128/MSPHERE.00183-20/SUPPL_FILE/MSPHERE.00183-20-ST002.DOCX
https://doi.org/10.1128/MSPHERE.00183-20/SUPPL_FILE/MSPHERE.00183-20-ST002.DOCX
https://doi.org/10.1096/FASEBJ.2022.36.S1.L7872
https://doi.org/10.1126/SCIENCE.ABJ2972
https://doi.org/10.1038/NBT.1614
https://doi.org/10.1038/nmicrobiol.2017.57
https://doi.org/10.1038/nmicrobiol.2017.57
https://doi.org/10.1080/19490976.2021.1919464/SUPPL_FILE/KGMI_A_1919464_SM3620.ZIP
https://doi.org/10.1080/19490976.2021.1919464/SUPPL_FILE/KGMI_A_1919464_SM3620.ZIP
https://doi.org/10.1186/2049-2618-1-3/FIGURES/5
https://doi.org/10.1093/NAR/GKR1079


Metabolic Engineering 79 (2023) 1–13

12

Haimet, F., Jamet, A., Juste, C., Kaci, G., Kleerebezem, M., Knol, J., Kristensen, M., 
Layec, S., le Roux, K., Leclerc, M., Maguin, E., Melo Minardi, R., Oozeer, R., 
Rescigno, M., Sanchez, N., Tims, S., Torrejon, T., Varela, E., de Vos, W., 
Winogradsky, Y., Zoetendal, E., 2010. A human gut microbial gene catalogue 
established by metagenomic sequencing. Nature 464, 59–65. https://doi.org/ 
10.1038/nature08821. 

Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., 
Lombard, V., Henrissat, B., Bain, J.R., Muehlbauer, M.J., Ilkayeva, O., 
Semenkovich, C.F., Funai, K., Hayashi, D.K., Lyle, B.J., Martini, M.C., Ursell, L.K., 
Clemente, J.C., van Treuren, W., Walters, W.A., Knight, R., Newgard, C.B., Heath, A. 
C., Gordon, J.I., 2013. Gut microbiota from twins discordant for obesity modulate 
metabolism in mice. Science 341. https://doi.org/10.1126/SCIENCE.1241214. 

Riglar, D.T., et al., 2017. Engineered bacteria can function in the mammalian gut long- 
term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658. 

Robert, S., Gysemans, C., Takiishi, T., Korf, H., Spagnuolo, I., Sebastiani, G., van 
Huynegem, K., Steidler, L., Caluwaerts, S., Demetter, P., Wasserfall, C.H., 
Atkinson, M.A., Dotta, F., Rottiers, P., van Belle, T.L., Mathieu, C., 2014. Oral 
delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis 
reverses diabetes in recent-onset NOD mice. Diabetes 63, 2876–2887. https://doi. 
org/10.2337/DB13-1236. 

S Nayfach, Z.S., 2019. New insights from uncultivated genomes of the global human gut 
microbiome. R.S.K.P.N.K Nature 568, 505–510. 

Saeidi, N., Wong, C.K., Lo, T.M., Nguyen, H.X., Ling, H., Leong, S.S.J., Poh, C.L., 
Chang, M.W., 2011. Engineering microbes to sense and eradicate Pseudomonas 
aeruginosa, a human pathogen. Mol. Syst. Biol. 7, 521. https://doi.org/10.1038/ 
msb.2011.55. 

Sánchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P., Kerkhoven, E.J., Nielsen, J., 2017. 
Improving the phenotype predictions of a yeast genome-scale metabolic model by 
incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935. https://doi.org/ 
10.15252/msb.20167411. 

Segal, J.P., Mullish, B.H., Quraishi, M.N., Iqbal, T., Marchesi, J.R., Sokol, H., 2020. 
Mechanisms underpinning the efficacy of faecal microbiota transplantation in 
treating gastrointestinal disease. Therap Adv Gastroenterol 13. https://doi.org/ 
10.1177/1756284820946904. 

Shen, T.C.D., Albenberg, L., Bittinger, K., Chehoud, C., Chen, Y.Y., Judge, C.A., Chau, L., 
Ni, J., Sheng, M., Lin, A., Wilkins, B.J., Buza, E.L., Lewis, J.D., Daikhin, Y., Nissim, I., 
Yudkoff, M., Bushman, F.D., Wu, G.D., 2015. Engineering the gut microbiota to treat 
hyperammonemia. J. Clin. Invest. 125, 2841–2850. https://doi.org/10.1172/ 
JCI79214. 

Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos- 
Guillot, E., de Wouters, T., Juste, C., Rizkalla, S., Chilloux, J., Hoyles, L., 
Nicholson, J.K., Dore, J., Dumas, M.E., Clement, K., Bäckhed, F., Nielsen, J., 2015. 
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