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A B S T R A C T

Power generation from biomass (biopower) has experienced substantial growth in the United States. Although
renewable and sustainably sourced biopower can reduce the carbon footprint of the electricity sector, there is a
scarcity of analyses that simultaneously consider the financial feasibility and sustainability criteria of procured
biomass. We developed a spatially-explicit optimization model to minimize the cost of meeting projected
biopower demand while ensuring carbon neutrality and biomass sustainability constraints. The optimization
model was applied to projected biopower demand scenarios in the eastern US, considering various public policy
decarbonization interventions. Modeling woody biomass procured from local forests as the source of biopower
was chosen due to its dominant role as a renewable energy source, regional availability, and lower risk of
violating carbon neutrality objectives. Initially, we projected the net growth of woody biomass in trees and
their carbon pools by 2035, as a function of biopower generation, utilizing data from 2009–2017. Subsequently,
forecasted woody biomass and projected biopower demand through 2035 were employed to determine optimal
levels of biopower generation and estimate the corresponding resource impacts within procurement forests.
The results suggest the potential for substantial increases in sustainable biopower generation in the eastern US.
However, the feasibility of this expansion depends on the continued economic viability of biopower generation
in the future. It is worth noting that the largest increases, surpassing threefold, in biopower generation over
the 2020–2030 decade could potentially compromise the carbon neutrality of locally procured woody biomass.
1. Introduction

Biopower, which involves generating electricity from biomass feed-
stocks, typically through combustion or co-firing with other fuels like
coal, plays a significant role in the renewable energy mix of the
United States. Wood and waste materials, including wood pellets and
biomass waste from landfills, collectively contribute 17% and 4% to US
renewable energy consumption, respectively (EIA, 2019, 2020b). The
eastern US region is particularly prominent for biopower generation
using wood as the primary feedstock (Fig. 1), characterized by low
carbon and energy intensity and localized socio-economic and environ-
mental impacts (Saunders et al., 2012; Ansari et al., 2023; He et al.,
2016; Susaeta et al., 2011). Wood procurement in this region typically
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involves short transport distances, minimizing additional greenhouse
gas emissions. Harvesting often occurs alongside the extraction of
higher-value wood products to ensure economic viability, with minimal
additional energy consumption required for processing and drying (Go-
erndt et al., 2013a; Abt et al., 2014; Dwivedi et al., 2011; Röder et al.,
2015). Co-firing woody biomass with coal presents an environmentally
beneficial alternative for existing coal-fired power plants, aiding in the
transition to renewable energy sources (Gugler et al., 2021).

Beyond environmental considerations, biopower also holds promise
for rural economic development. Studies suggest that investments
in wood-based biopower can yield significant returns in local rural
economies (Dahal et al., 2020). Moreover, biopower utilization has the
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Fig. 1. Wood-using and coal-burning power plants in the eastern US that were in operation in 2017. Biopower generations are reported for year 2017.
Data source: EIA (2021b,a).
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otential to contribute to decarbonization efforts by promoting forest
egrowth and incentivizing sustainable forest management practices
hat enhance carbon sequestration (Aguilar et al., 2012; Amigues
nd Moreaux, 2019). Evidence from the US indicates that the use of
ood as a renewable energy feedstock has not depleted local forest

arbon stocks, a crucial factor for sustainability and carbon emis-
ions reduction compared to fossil fuels (Aguilar et al., 2022). Similar
indings from studies conducted in the European Union highlight the
otential for carbon emission reductions through supportive policies
romoting the use of woody biomass, such as the EU Emissions Trading
ystem (Dechezleprêtre et al., 2023).

The assessment of resource impacts in energy generation has been
subject of study in various research endeavors. Dincer (1999) was

mong the early studies that considered environmental impacts related
o generating energy. The operations research/operations management
iterature includes many applications of optimization methods to re-
uce the environmental impacts of energy generation and minimize
arbon emissions from the power sector (Hashim et al., 2005; Hen-
ing et al., 2006; Omu et al., 2013; Chen et al., 2013; Kang et al.,
020; Álvarez-Miranda et al., 2018). Several authors have focused on
itigating the carbon footprint from biomass-based heat and power

eneration. Chinese and Meneghetti (2005) proposed a mixed integer
inear programming optimization model for local biomass-based heat-
ng networks with a goal of maximizing profits and minimizing GHG
missions. Bentsen et al. (2014) discussed optimal biomass allocation
or energy generation in the EU and its potential GHG benefits. Kim
t al. (2011) presented an optimization model for minimizing the
ost of a biomass processing network and reducing its carbon foot-
rint. There is a large body of literature on biomass supply chain
odeling and optimization for minimizing related GHG emissions.

or instance, Ekşioğlu et al. (2009) analyzed the logistical challenges
2

elated to biomass supply chains along with the optimal number and c
capacity of biofuel production plants. De Meyer et al. (2015) developed
a generic mathematical model to optimize strategic decisions such
as facility location and resource allocation in biomass-based supply
chains. Dundar et al. (2016) presented minimum cost approaches to re-
duce CO2 emissions from co-firing woody biomass in a set of candidate
oal burning power plants across five Midwestern US states. Liu et al.
2014) studied the cost feasibility and environmental impacts of co-
iring biomass for electricity. Hu et al. (2011) presented linear models
nalyzing the impact of biomass co-firing for electricity generation on
arbon dioxide and sulfur dioxide. Dundar et al. (2021) developed
robust mixed-integer nonlinear programming model that involves
ulti-state partnership to minimize cost and CO2 emissions related to

o-firing woody biomass.
In this study, the analysis focuses on the potential for increasing

iopower generation and its impact on timberland resources in the
astern US through 2035. Contributions to the literature concerning
he optimal level of biopower generation, considering resource impacts,
nclude: (1) the formulation of a multi-objective optimization model
o determine the minimum cost of generating biopower while meeting
arbon neutrality and sustainability constraints; (2) the development of
forecasting model to predict the level of timberland attributes (specif-

cally, the annual net growth of biomass of trees and carbon in trees)
cross procured forests based on the level of bioenergy generation; and
3) an evaluation of the potential for maintaining carbon neutrality
nd sustainability goals while increasing biopower generation under
elected policy interventions. Next, the study introduces a forecasting
ethod for conducting an ex ante analysis to project forest attributes

nd an optimization model to determine the optimal level of biopower
eneration based on these projected forest attributes under different
cenarios. This is followed by results and discussion, providing inter-
retation and context to the optimization model solutions in light of

ost, carbon neutrality, and sustainability considerations.
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Fig. 2. Consolidated power plants and their procurement areas from 2009 to 2017.
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2. Optimization from spatially-explicit biomass and power gener-
ation data

2.1. Wood-using and coal-burning power plants

In this analysis, 156 wood-using and 224 coal-burning operational
power plants across the eastern US in 2017 were identified (EIA,
2021a,b), shown in Fig. 1. Here, it is assumed that all of the selected
coal facilities are eligible for co-firing wood to generate biopower in the
short-term. These eligible coal facilities account for 77% of the total US
coal fleet in 2017 that had not announced a planned retirement date
by 2035 (EIA, 2020a; Picciano et al., 2020). Based on a review of the
literature, a circular woody biomass procurement area with a radius of
50 miles (80 km) was assigned to power plants with more than two
million MWh of total electricity generation from 2009 to 2017, while a
radius of 30 miles (48 km) was assigned to power plants with a lower
amount of generation (Aguilar et al., 2020; Goerndt et al., 2013b). To
mitigate the complexity of the procurement areas’ proximity, power
plants located within 20 miles (32 km) of each other were represented
by a single notional plant exhibiting the characteristics of the consoli-
dated plants. After these changes, 315 power plants remain across the
eastern US as depicted in Fig. 2.

To monitor the sustainability and carbon neutrality of generating
bioenergy, two timberland attributes around the selected power plants
were studied: (1) annual net growth of biomass of trees and (2) an-
nual net growth of carbon in trees. The timberland attributes were
collected from Forest Inventory and Analysis (FIA) (USDA, 2021b;
Mirzaee, 2021) for all procurement areas from 2009 to 2017. Detailed
descriptions about the selected timberland attributes appear in Table 1.

Instead of studying the circular procurement areas directly, each of
them was partitioned into a set of mutually exclusive and exhaustive
analysis areas. This was done to alleviate the inherent dependence in
timberland attributes within regions intersecting multiple procurement
areas. The method offered by Mirzaee et al. (2022) was applied to es-
timate levels of the timberland attributes and corresponding bioenergy
3

2

generation across 932 analysis areas, each comprising at least 20 square
miles (50 km2) in area.

.2. Biopower policies

Determining the future level of bioenergy generation sourcing from
he analysis areas relies on estimates of the expected electricity gen-
ration in the future (Burtraw et al., 2003). The projected electricity
enerations are obtained from the Engineering, Economic, and Envi-
onmental Electricity Simulation Tool (E4ST), a detailed model for
nalysis of power sector policy in US and Canada (Mao et al., 2016;
hawhan et al., 2014; Shawhan and Picciano, 2019). The projected
lectricity generations under three public policy interventions were
ollected, as shown in Table 2. Selected policies correspond to those
resented by Picciano et al. (2022) which were chosen as viable options
or increasing biopower generation to facilitate the decarbonization of
he US electricity sector.

In this study, the aim is to evaluate the feasibility of a viable
pper bound on the amount of biopower generation in the eastern
S. For that reason, it is assumed that the identified coal facilities
an utilize woody biomass for 15% of their total generation by 2035.
herefore, the projected biopower generation includes both 100% of
he projected generation from biopower plants and 15% of the total
rojected electricity generation in currently coal-burning plants. Note
hat under this assumption, policies with more reliance on coal-burning
ower plants will generate a considerable amount of biopower in the
uture, independent of the generation by biopower-only plants. As a
esult, the BAU policy scenario requires higher biopower generation
han the CES scenario. E4ST data shows that expected total biopower
eneration would increase more than three times and reach between
0–115 GWh from 2017 to 2035 under the different policy scenarios
n the eastern US.

Fig. 3 shows total historical biopower generation from 2009 to 2017
nd projected biopower generation for every three-year from 2026 to

035 under different policy scenarios as well as expected biopower
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Table 1
Selected fundamental descriptors of timberland structure and carbon stocks.

Attributes Description

Annual net growth of biomass of trees Tons of annual net growth of aboveground biomass of trees on
timberlanda (at least 2.54 cm diameter at 1.37 m above the forest floor)

Annual net growth of carbon in trees Tons of annual net growth of aboveground carbon in trees on timberlanda

(at least 2.54 cm diameter at 1.37 m above the forest floor)

a The US Forest Service defines timberland as forest land capable of producing more than 1.4 cubic meters of wood per year
and not legally withdrawn from timber production.
Table 2
Selected energy policy scenarios.

Policy scenario Description

Business as usual (BAU) US federal and state policies as of August 2019. These include federal renewable energy tax
incentives, state 𝐶𝑂2 cap-and-trade programs, and state renewable energy and clean energy standards.

Biopower production tax credit (BIO PTC) A renewable electricity production tax credit of $22/MWh in 2025 for biomass co-firing generation at
coal facilities, reflecting the PTC historically provided for US wind generation (EPA, 2021)

Clean energy standard (CES) A federal clean energy standard imposing a national average clean energy requirement of 77%. The
requirement reflects an annual linear interpolation from current levels of clean generation to 100%
clean in 2050. The standard applies a 𝐶𝑂2 emissions intensity benchmark of 0.82 metric tons/MWh.
The benchmark identifies a measure against which partial credit will be awarded. This policy
provides linearly interpolated partial credit for resources with a 𝐶𝑂2 emissions intensity between 0.82
and 0.00. For example, a natural gas combined cycle unit with an emissions intensity of 0.41 would
receive 0.5 partial credit per MWh, carbon-free source would receive 1 full credit per MWh. Biomass
co-firing receives 0.5 partial credit per MWh of biomass generation (Picciano et al., 2020, 2022).
Fig. 3. Total historical (2009–2017) and projected (2026–2035) biopower generations under different policy scenarios (left) and projected generation in 2035 under the BAU
scenario (right).
generation from studied power plants in 2035 under the BAU scenario.
Observe that total biopower generation decreases starting in the year
2026 for BIO PTC, and also decreases starting in the year 2029 for CES.
This occurs because under these policies the total amount of generation
from coal resources will decline which will reduce the amount of
biopower generation from co-firing in coal-burning power plants.

2.3. Forecasting timberland attributes

The level of biopower generation relies on the biomass resources
available within an analysis area. A forecasting model was developed to
estimate the annual net growth of both biomass of trees and carbon in
trees within the analysis areas across three-year increments from 2026
to 2035, utilizing historical data for every year from 2009 to 2017. The
4

forecasting model incorporates significant factors related to changes in
timberland attributes, including those induced by power plants, human
interventions, competition from wood industries, and natural disasters.
The model’s explanatory variables and their descriptions are listed in
Table 3. Fig. 4 illustrates the analysis areas and forest regions, along
with wood industries, as well as the areas affected by drought in one
year (2012).

The forecasting model was constructed by applying a lagged linear
mixed model (LMM) to fit the timberland attributes in each analysis
area. Let 𝑦𝑡𝑖 denote the level of the timberland attribute in analysis area
𝑖 at time 𝑡, where 𝑖 ∈ {1,… , 932} and 𝑡 ∈ {2010,… , 2017}, then:

ln(𝑦𝑡𝑖) = 𝛽0 +
∑

𝑘
𝛽𝑘𝑣

𝑡−1
𝑘𝑖 +

∑

𝑢
𝛼𝑢ℎ𝑢𝑖 + 𝜖𝑡𝑖 (1)

and
𝑡 𝑡
𝜖𝑖 = 𝑏𝑖 + 𝜀𝑖 (2)
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Fig. 4. Forest regions and power plants from 2009 to 2017 (left), along with location of wood pellet mills, pulp mills, and areas of reported extreme weather conditions in 2012
(right).
Here, 𝛽0 represents a fixed intercept, while 𝑘 and 𝑢 denote indices for
time-variant (𝑣𝑘.) and time-invariant variables (ℎ𝑢.), respectively, each
associated with corresponding coefficients 𝛽𝑘 and 𝛼𝑢. Additionally, 𝑏𝑖
stands for random intercepts, and 𝜀𝑡𝑖 ∼ 𝑁(0, 𝜎2𝑡 ) represents error terms.
A logarithmic transformation is applied to reduce the impact of high
variation among the responses on the normality assumption of the
error term. To project the timberland attributes in the future, we made
the following assumptions regarding the projection of the explanatory
variables by the year 2035:

1. Forest ecological regions will not change.
2. No new wood pellet mill, pulp mill, or port for exporting wood

products will be added to the selected facilities.
3. No new dedicated biopower plant will be added to the selected

plants.
4. None of the selected power plants or related wood industry mills

will be retired.
5. Population of analysis areas will grow by 12.75% (Vespa et al.,

2018) with a flat 0.75% annual increase rate.
6. Croplands in analysis areas will decline by 2.5% (USDA, 2021d)

with a flat 0.15% annual decrease rate.
7. Drought will impact 10% more of each analysis area (Peters and

Iverson, 2019) with a flat 0.6% increase in annual area impacted
by drought.

Given the LMM regression coefficients (derived from historical data)
and the projected future levels of the explanatory variables (based
on the above assumptions), Eq. (1) can be rewritten to project the
timberland attributes for every area 𝑖 and time 𝑡 ∈ {2026, 2029,… , 2035}
as a function of biopower generation in power plant 𝑗, 𝑥𝑖𝑗 :

ln(𝑦𝑡𝑖) = 𝛽0 +
∑

𝑘
𝛽𝑘𝑣

𝑡−1
𝑘𝑖 +

∑

𝑢
𝛼𝑢ℎ𝑢𝑖 + 𝑏𝑖 + 𝜀𝑡𝑖

= 𝛽0 + 𝛽1𝑣
𝑡−1
1𝑖 +

∑

𝑘>1
𝛽𝑘𝑣

𝑡−1
𝑘𝑖 +

∑

𝑢
𝛼𝑢ℎ𝑢𝑖 + 𝑏𝑖 + 𝜀𝑡𝑖

= 𝛽0 + 𝛽1
∑

𝑥𝑡−1𝑖𝑗 +
∑

𝛽𝑘𝑣
𝑡−1
𝑘𝑖 +

∑

𝛼𝑢ℎ𝑢𝑖 + 𝑏𝑖 + 𝜀𝑡𝑖

(3)
5

𝑗∈𝐽𝑖 𝑘>1 𝑢
which implies (Wooldridge, 2020):

�̂�𝑡𝑖 = exp(𝛽0 + 𝛽1
∑

𝑗∈𝐽𝑖

𝑥𝑡−1𝑖𝑗 +
∑

𝑘>1
𝛽𝑘𝑣

𝑡−1
𝑘𝑖 +

∑

𝑢
𝛼𝑢ℎ𝑢𝑖 + 𝑏𝑖 +

�̂�2

2
)

= exp(𝑂𝑡−1
𝑖 + 𝛽1

∑

𝑗∈𝐽𝑖

𝑥𝑡−1𝑖𝑗 )
(4)

where �̂� is the standard error of the regression, and ∑

𝑗∈𝐽𝑖 𝑥
𝑡−1
𝑖𝑗 is total

level of biopower generation sourcing from area 𝑖 across the associated
power plants, 𝐽𝑖, at year 𝑡−1. 𝑂𝑡−1

𝑖 is determined a priori by adding half
of the squared regression standard error, fixed and random intercept
values, and the inner product of the projected variable values for all
variables excluding biopower generation, along with their correspond-
ing coefficients, for each area 𝑖 and time 𝑡 − 1. In the given context,
functions of the annual net growth of biomass of trees per thousand
ton (𝐵(𝑥𝑡𝑖𝑗 )) and annual net growth of carbon in trees per thousand ton
(𝐶(𝑥𝑡𝑖𝑗 )) can be written as:

𝐵(𝑥𝑡𝑖𝑗 ) = exp(𝐵𝑡−1
𝑖 + 𝛽𝑏

∑

𝑗∈𝐽𝑖

𝑥𝑡−1𝑖𝑗 ) (5)

𝐶(𝑥𝑡𝑖𝑗 ) = exp(𝐶 𝑡−1
𝑖 + 𝛽𝑐

∑

𝑗∈𝐽𝑖

𝑥𝑡−1𝑖𝑗 ) (6)

where 𝐵𝑡−1
𝑖 and 𝐶 𝑡−1

𝑖 represent the expected values for annual net
growth of biomass of trees and carbon of trees excluding biopower
generations effects with 𝛽𝑏 and 𝛽𝑐 coefficients, respectively.

The proposed LMM was evaluated by comparing it with two other
modified forms of the model. The first model (OLS) is a simplified
version where the random effects are removed, resulting in a more
traditional linear model fitted with ordinary least squares. The sec-
ond model (GLS) incorporates the first-order autoregressive correlation
structure and is fitted using generalized least squares. Both the LMM
and GLS models demonstrate significantly better performance in terms
of AIC and BIC compared to the OLS model. However, the LMM
achieves a lower sum of squared errors of the test set and lower sum

of squared residuals.
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Table 3
Descriptions and descriptive statistics for model’s explanatory variables (𝑛 = 7, 456).

Variables Description Min Mean Max SD

Biopower
generation (𝑣1)

Estimated bioenergy generation in
the analysis area; per GWh (EIA,
2021a,b)

0.00 28.28 882.53 66.94

Years of
operation (𝑣2)

Average years of operation of
power plants contained in the
analysis area; since 1990 (EIA,
2021b)

0.00 22.87 27.00 3.65

Number of
power plants
(𝑣3)

Number of power plants’
procurement area contained in
the analysis area (EIA, 2021b)

1.00 2.36 7.00 1.19

Wood pellet
mills intersection
(𝑣4)

Total percentagea of the analysis
area covered by wood pellet mill
procurement zonesb (FORISK,
2018)

0.00 0.19 3.20 0.42

Pulp mills
intersection (𝑣5)

Total percentagea of the analysis
area covered by pulp mill
procurement zonesb (Johnson and
Steppleton, 2007; Johnson et al.,
2010; Piva et al., 2014; Bentley
and Steppleton, 2013; Gray et al.,
2014, 2016)

0.00 1.40 6.52 1.59

Drought level
(𝑣6)

Percentage of the analysis area
affected by a severe, extreme, or
exceptional drought in August
preceding a given year (USDA,
2021c; U.S. Drought Monitor,
2021)

0.00 0.07 1.00 0.24

Population
density (𝑣7)

Summation of county populations
(U.S. Census Bureau, 2020b,a)
that lie inside the analysis area;
per ten thousand

1.14 52.29 1746.12 104.93

Cropland ratio
(𝑣8)

Summation of county’s crop
acreage (USDA, 2021a) ratios that
lie inside the analysis area

0.00 0.13 1.00 0.13

Nearest port
distance (ℎ1)

Euclidian distance from centroid
of the analysis area to the nearest
port that exports forest products;
per mile (USDOT, 2019)

0.50 83.20 360.20 56.10

Forest ecological
regions (FR)
(ℎ2−4)

Categorical variable including
four major ecological regions
(Dyer, 2006) (fig4]Fig. 4); the
forest region covering the
maximum amount of the analysis
area is selected as forest region of
the analysis area

South. Mixed: 33% Beech–Maple–Oak: 28% Meso-phytic: 31% North. Hardwoods: 8%

a Can be greater than 1 if area intersects with more than one zone.
b Procurement zones, with radii of 50 and 75 miles, respectively, were assigned to wood pellet and pulp mills.
2.4. Optimal level of biopower generation

A multi-objective mathematical model was developed to determine
the optimal level of biopower generation sourced from each analysis
area. This model generates the required woody biomass energy while
considering a set of environmental constraints. It is worth noting that
the procurement areas used in the LMM were determined assuming a
radius of 30 or 50 miles (48 or 80 km) centered around each power
plant, depending on the level of electricity generation. However, in the
optimization model, power plants potentially can access more distant
analysis areas. This allowance is made because some power plants, par-
ticularly those with higher projected biopower generation, may require
more biomass fuel than can be found within their 30 (or 50) mile
procurement area to satisfy the projected future demands. Therefore,
providing a larger sourcing distance allows the model to obtain the
required biomass at minimal cost, subject to sustainability conditions.
Next, the indices, parameters, decision variables, and constraints used
6

in this model are described.
Indices and parameters
𝒊: analysis areas index, 𝑖 ∈ {1,… , 932}
𝒋: power plants index, 𝑗 ∈ {1,… , 282}
𝒕: year index, 𝑡 ∈ {2026, 2029,… , 2035}, where 𝑡 + 1 refers to a
three-year increment
𝜹: a threshold distance, 𝛿 ∈ {150, 200, 250} miles
𝑱𝑖: set of power plants within 𝛿 distance from centroid of area 𝑖
𝒃𝑡𝑗 : level of projected biopower generation at plant 𝑗 at time 𝑡
(GWh)
𝒄𝑖𝑗 : Transportation cost of generating biopower at power plant 𝑗
sourcing from area 𝑖 ($/GWh)
𝒅𝑖𝑗 : Euclidean distance between power plant 𝑗 and centroid of
area 𝑖 (mile)
𝝋𝑖: annual net growth of carbon in trees in area 𝑖 in year 2010
(thousand ton)
𝜽: a multiplier for annual net growth of biomass of trees in each
area

𝝆: energy content of burning wood (GWh/thousand ton)
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𝒇 : freight cost ($/thousand ton × mile)

The energy content of wood burned in power plants depends on
actors such as the wood’s water content and the efficiency of the
ower plant. Typically, one ton of dry wood contains about 4.8 MWh
f energy (NREL, 2008). However, wood chips can have a water
ontent ranging from 25% to 45% (Pedišius et al., 2021; Krajnc, 2015),
ere assumed to have a 30% water content and 70% wood con-

ent in this study. Additionally, the power plant’s efficiency can af-
ect the electricity generation from wood resources. Combined Heat
nd Power (CHP) systems, the predominant technology among wood-
urning power plants, generally operate with an efficiency of 65%–
5% (DOE, 2017). For this analysis, a 75% efficiency was considered
or the studied power plants. Therefore, an energy content of 𝜌 =
4.8 × 0.7 × 0.75 = 2.5 MWh/ton (or GWh/thousand ton) is utilized.
urthermore, a freight cost of 𝑓 = $240 per thousand ton per mile was
onsidered (Goerndt et al., 2013b).

ecision variable
𝒙𝑡𝑖𝑗 : level of biopower generation at power plant 𝑗 sourcing from
area 𝑖 at time 𝑡 (GWh)

nvironmental impact functions
𝑩(𝑥𝑡𝑖𝑗 ): expected annual net growth of biomass of trees in area
𝑖 at time 𝑡 for 𝑥 level of biopower generation at power plant 𝑗
(thousand ton)
𝑪(𝑥𝑡𝑖𝑗 ): expected annual net growth of carbon in trees in area 𝑖
at time 𝑡 for 𝑥 level of biopower generation at power plant 𝑗
(thousand ton)

Objective function
The objective function aims to minimize the variable cost of trans-

porting biomass resources to the power plants from each analysis area.
It is important to note that E4ST has already optimized the generation
amounts at each power plant under each of the considered policies,
thereby minimizing the costs of generation. The biomass sourcing de-
cision being optimized here is not modeled within the E4ST framework.
The objective function is defined as follows:

min
∑

𝑖

∑

𝑗∈𝐽𝑖

∑

𝑡
𝑐𝑖𝑗𝑥

𝑡
𝑖𝑗 (7)

where 𝑐𝑖𝑗 is computed by:

𝑐𝑖𝑗 = (𝑓 × 𝑑𝑖𝑗 )∕𝜌 (8)

A uniform distribution of biomass resources across each analysis
area was assumed due to a lack of information on the biomass sourcing
locations for each power plant. Subsequently, transportation costs were
computed based on the Euclidean distance from power plants to the
centroid of each analysis area (𝑑𝑖𝑗).

Carbon neutrality of biopower generated from woody biomass
To maintain the carbon neutrality of electricity generation from

woody biomass, the estimated total annual net growth of carbon stocks
in trees across the eastern US in future years should be no less than
the historical total annual net growth of carbon pools in that area. In
this study, the level of future carbon pools is compared with the 2010
level, predating the intensive bioenergy policy period in the US (Aguilar
et al., 2020). The constraint is defined such that the sum total annual
net growth of carbon in trees across analysis areas in the eastern US at
the end of each year (i.e., 2029, 2032, and 2035) remains greater than
or equal to the 2010 level. The corresponding mathematical equation
is expressed as:
∑

𝑖
𝐶(𝑥𝑡+1𝑖𝑗 ) ≥

∑

𝑖
𝜑𝑖 ∀ 𝑡 (9)

which by using Eq. (6), can be represented by:

∑

(

exp(𝐶 𝑡
𝑖 + 𝛽𝑐

∑

𝑥𝑡𝑖𝑗 )

)

≥
∑

𝜑𝑖 ∀ 𝑡 (10)
7

𝑖 𝑗∈𝐽𝑖 𝑖
Resource sustainability of woody biomass procured from local forests
To sustain timberland resources, the total amount of woody biomass

harvested by power plants from each analysis area must not exceed
the annual net growth of biomass of trees in that area. Unlike the car-
bon neutrality constraint, which aggregates effects across geographic
regions, this forest sustainability constraint is enforced for each indi-
vidual analysis area at each time period. This constraint is presented
as:
∑

𝑗∈𝐽𝑖

𝑥𝑡+1𝑖𝑗 ≤ 𝜌 × 𝐵(𝑥𝑡+1𝑖𝑗 ) ∀ 𝑖, 𝑡 (11)

which after applying Eq. (5) can be written as:
∑

𝑗∈𝐽𝑖

𝑥𝑡+1𝑖𝑗 ≤ 𝜌 × exp(𝐵𝑡
𝑖 + 𝛽𝑏

∑

𝑗∈𝐽𝑖

𝑥𝑡𝑖𝑗 )

ln(
∑

𝑗∈𝐽𝑖

𝑥𝑡+1𝑖𝑗 ) ≤ ln(𝜌) + 𝐵𝑡
𝑖 + 𝛽𝑏

∑

𝑗∈𝐽𝑖

𝑥𝑡𝑖𝑗 ∀ 𝑖, 𝑡
(12)

To impose a restrictive assumption regarding forest sustainability,
the following constraint is added: the total level of biopower generation
sourced from an area throughout the year 𝑡 + 1 must not exceed the
annual net growth of biomass of trees available at the end of year
𝑡, regardless of the level of biopower generation in that year. This
constraint is presented as:

ln(
∑

𝑗∈𝐽𝑖

𝑥𝑡+1𝑖𝑗 ) ≤ 𝜃 × (ln(𝜌) + 𝐵𝑡
𝑖 ) ∀ 𝑖, 𝑡 (13)

where 0 < 𝜃 ≤ 1 is a multiplier to specify an upper limit for using
woody biomass. Note that any 𝜃 multiplier less than or equal to 1 can
satisfy the biopower sustainability requirement. For instance, a 𝜃 = 1
means that power plants can use no more than the amount of annual
net growth of biomass which is available at the beginning of the year
in each analysis area. Depending on the values of 𝛽𝑏 and 𝜃, note that
one of Eq. (12) or Eq. (13) becomes a redundant constraint (e.g., when
𝜃 = 1 and 𝛽𝑏 > 0, Eq. (12) is redundant).

Biopower demand
Lastly, at each power plant, the total amount of biopower gener-

ation sourced from surrounding analysis areas should be equal to the
projected biopower generation requirement for that plant as identified
by E4ST:
∑

𝑖
𝑥𝑡𝑖𝑗 = 𝑏𝑡𝑗 ∀ 𝑗 ∈ 𝐽𝑖, 𝑡 (14)

To enhance the computational performance of the nonlinear model,
the following initialization was applied for the decision variable values
based on the available biomass at each area:

̂ 𝑡𝑖𝑗 = 0.1 × 𝐵𝑡
𝑖 (15)

Furthermore, to assess the impact of the optimal solutions on the
analysis areas, the bioenergy ratio was defined as:

𝑅𝑡
𝑖 =

∑

𝑗∈𝐽𝑖 𝑥
∗𝑡
𝑖𝑗

𝐵(𝑥∗𝑡𝑖𝑗 ) × 𝜌
∀ 𝑖, 𝑡 (16)

here the numerator is the total optimal level of bioenergy generation
ourcing from area 𝑖 (as determined by the model) and the denominator
s the maximum obtainable bioenergy (from the annual growth) within
hat area.

. Results and discussion

The defined linear mixed model (LMM) was employed to estimate
he corresponding regression parameters (𝛽𝑏 and 𝛽𝑐) in Eqs. (5) and (6).
he regression parameters were estimated using restricted maximum

ikelihood (Harville, 1977) by utilizing the lme function from the nlme
package in R (R, 2021; Pinheiro et al., 2014). Estimated coefficients
along with the corresponding p-values and standard errors for both
timberland attributes, are listed under Table 4. Next, our optimization
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Fig. 5. Annual net growth of biomass (left), bioenergy generations (middle), and bioenergy ratios (right) in 2010 and 2035 under different policy scenarios at 𝜃 = 1.
model was constructed using the estimated regression parameters and
projected explanatory variables.

The optimization model was solved for two sustainability regimes.
First, power plants potentially have access to the entire annual net
growth of biomass of trees within the analysis areas. Second, power
plants can access up to 80% of the annual biomass net growth. Our
results indicate that for each sustainability level, optimal solutions
exist that satisfy the sustainability constraints and projected demands
under different policy scenarios in the eastern US. Subsequently, these
optimal solutions are discussed along with the processes associated
with obtaining them. The optimization problems were solved using the
CONOPT nonlinear solver in GAMS. All optimization instances were
8

executed on a Linux HPC cluster (Cluster, 2020) using 10 Intel Xeon
Gold 2.00 GHz cores with 64 GB memory.

3.1. Sustainable solutions

Harvesting from the annual net growth of woody biomass in an area
can be considered a sustainable approach that would maintain forest
resources at the same level over time. In our optimization model, this
approach can be achieved by setting the multiplier 𝜃 = 1 in Eq. (13).
By solving the optimization model under this assumption, an optimal
solution is found that can sustainably satisfy projected future bioenergy
demands as well as the minimum required level for carbon stocks in
trees across the eastern US. These optimal solutions exist when the
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Table 4
Regression coefficients (log-transformed) along with standard errors and p-values (𝑛 = 7, 456).

Annual net growth of biomass of trees
(thousand ton)
AIC: −830.357 �̂�: 0.152 RMSE = 0.044

Annual net growth of carbon in trees
(thousand ton)
AIC: −830.354 �̂�: 0.152
RMSE = 0.044

Coef. [std. error] p-value Coef. [std. error] p-value

Intercept 7.296 [0.149] <.001 6.603 [0.149] <.001
Biopower generation 0.001 [0.000] <.001 0.001 [0.000] <.001
Years of operation −0.007 [0.001] <.001 −0.007 [0.001] <.001
Number of power plants −0.719 [0.038] <.001 −0.719 [0.038] <.001
Wood pellet mills intersection 0.031 [0.009] 0.001 0.031 [0.009] 0.001
Pulp mills intersection −0.022 [0.010] 0.029 −0.022 [0.010] 0.029
Drought level −0.049 [0.008] <.001 −0.049 [0.008] <.001
Population density −0.001 [0.000] 0.022 −0.001 [0.000] 0.022
Cropland ratio 0.048 [0.068] 0.482 0.048 [0.068] 0.482
Nearest port distance 0.001 [0.001] 0.028 0.001 [0.001] 0.028
FR: Beech–Maple–Oak −1.496 [0.115] <.001 −1.496 [0.115] <.001
FR: Mesophytic −0.601 [0.111] <.001 −0.601 [0.111] <.001
FR: Northern Hardwoods −0.586 [0.175] <.001 −0.586 [0.175] <.001
Fig. 6. Transportation cost per MWh biopower generation (a) and total annual growth of carbon in trees under different policies scenarios (b) in the eastern US.
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nnual net growth of woody biomass in the analysis areas can be
ccessed by power plants within a maximum range of 𝛿 = 150 miles
241 km).

Upon reviewing the optimal levels of biopower generation, signif-
cant increases are observed across the analysis areas in Southeast-
rn states, including Louisiana, Alabama, Georgia, and South Carolina
Fig. 5). Furthermore, in our ex post statistical analysis, a positive trend
as associated with the amount of biopower generation and the annual
et growth of biomass of trees (𝛽𝑏 = 0.001), as shown in Table 4. This
ositive coefficient indicates that for any GWh of biopower generation
ourced from an analysis area in time 𝑡 + 1, there must have been
o decrease in the annual net growth of biomass of trees due to
he biopower generation in that analysis area in time 𝑡. Therefore,
s observed, the analysis areas with the highest projected bioenergy
eneration are expected to have the highest annual net biomass growth
o address the projected demands (Fig. 5).

The total annual net growth of woody biomass across the analysis
reas in 2035 is expected to be 10.5%, 9%, and 5.5% more than
he 2010 level under BIO PTC, BAU, and CES policies, respectively.
oreover, the bioenergy ratios were computed to evaluate the intensity

f using biomass resources for biopower generation using Eq. (16).
he ratios reveal that most analysis areas would require less than
9

w

0% of their biomass annual net growth. However, it was observed
hat areas near metropolitan regions would require significantly higher
oody biomass utilization to fulfill the projected biopower demands.
or instance, in 2035, more than 80% of the annual net biomass growth
ear Detroit, MI, Chicago, IL, Madison, WI, and Saint Louis, MO would
e required to fulfill the expected biopower demands (Fig. 5).

Regarding the carbon neutrality assumption of generating biopower,
t was found that the estimated total annual net growth of carbon
tocks in trees across the eastern US in 2035 is expected to be 5%
o 10% more than in 2010 under all of the different policy scenarios
Fig. 6b). Among the policies considered, BIO PTC has the highest total
ariable cost over each three-year period. This can be explained by
he fact that BIO PTC has the highest projected bioenergy generation
nd relies on supplying more wood resources, thus increasing the total
ransportation cost of biopower generation. Comparing the cost of
ransporting woody biomass per MWh of bioenergy generation shows
ittle difference between the policy scenarios (Fig. 6a).

It is important to note that in conducting sensitivity analysis with
oad distances instead of Euclidean distances for calculating total trans-
ortation costs, a tortuosity factor ranging from 1.2 to 1.5, as suggested
n the literature (Goerndt et al., 2013b; Perez-Verdin et al., 2009),
as incorporated. The sensitivity analysis indicates that increasing the
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Fig. 7. Annual net growth of biomass (left), bioenergy generations (middle), and bioenergy ratios (right) in 2010 and 2035 under different policy scenarios at 𝜃 = 0.8.
distance by a factor ranging between 20% to 50% would lead to approx-
imately a 35% increase in total costs. Nevertheless, the other findings
presented in this paper remain consistent despite this adjustment.

3.2. Biomass-cap solutions

Utilizing the entire annual net growth of woody biomass resources
in an area for biopower generation would present challenges in imple-
mentation. To find a more sustainable approach, the amount of woody
biomass that can be used by power plants was limited. A multiplier
𝜃 = 0.8 was applied in Eq. (13) to restrict the available woody biomass
for electricity generation to 80% of the annual net biomass growth
within each analysis area.
10
By limiting the maximum harvestable biomass for energy genera-
tion, power plants would require accessing more distant supplies to
satisfy their projected demands. Three threshold distances were con-
sidered for 𝛿 = 150, 200, and 250 miles to find feasible solutions under
each policy scenario. For the BIO PTC policy – the policy with the high-
est projected biopower generation – a distance of 𝛿 = 250 miles (402
km) provides sufficient resources to satisfy both projected demands
and environmental constraints. For BAU and CES policy scenarios, 𝛿 =
200 and 150 miles (322 and 241 km), respectively, were found to be
the minimum feasible distances. Fig. 7 shows the annual net growth
of biomass, the amount of biopower generation, and the bioenergy
ratios within the analysis areas, as determined by the optimization
model.
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Fig. 8. Transportation cost per MWh biopower generation (a) and total annual growth of carbon in trees under different policies scenarios (b) in the eastern US using an upper
limit to harvest-able woody biomass resources.
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By reviewing these optimal solutions, it was found that applying an
80% biomass-cap policy can significantly decrease pressure on areas
with a high woody biomass utilization ratio (Fig. 7). However, this
upper limit would increase the total transportation cost of generating
bioenergy by more than 50% in comparison to the 𝜃 = 1 regime
(Fig. 8a). Among the studied policies, BIO PTC and CES would be
expected to have the highest and the lowest total transportation cost per
MWh, respectively. Across these solutions, the total annual net growth
of biomass of trees and their carbon pools in 2035 is expected to be 5%
to 10% more than the 2010 level, similar to the expected biomass of
trees and carbon pools obtained under the alternative assumption 𝜃 = 1
(Fig. 8b).

3.3. Policy implications

Reviewing the optimal solutions for the discussed policy scenarios,
it is observed that increasing the use of woody biomass for electricity
generation while still satisfying the environmental constraints in the
analysis areas is feasible. Under the BIO PTC, BAU, and CES scenar-
ios, the projected bioenergy generation would increase from 30 GWh
in 2017 to 115, 110, and 90 GWh in 2035, respectively. Policies
supporting more biopower generation can reduce the dependence on
coal resources and decrease the power sector’s carbon footprint. How-
ever, increased bioenergy generation can also raise demand for wood
resources and potentially impact timberland areas.

In terms of employing different suitability regimes, limiting max-
imum harvestable woody biomass to 80% of the annual net biomass
growth prevents overly high woody biomass utilization and preserves
a greater amount of resource in each area. However, the biomass-cap
policy would not change the total amount of woody biomass con-
sumption by power plants. Rather, it shifts the distribution of biomass
usage in the analysis areas in such a way that it creates more areas
with moderate utilization (10%–50%) and fewer areas with high (or
low) utilization ratios (Fig. 9). This would create a safeguard for the
sustainability of timberland resources, especially in areas where other
wood industries – like wood pellet or pulp mills – are located.

Meanwhile, limiting harvestable resources requires accessing more
distant timberland areas to address the power plants’ biomass de-
mands, which necessitates more transportation and, as a result, more
carbon emissions from transportation. Our findings indicate that im-
plementing the biomass-cap regime would result in a transportation
11

s

increase of over 50% across the eastern US from 2026 to 2035 com-
pared to the sustainable regime. However, the potential increase in
transportation-related CO2 impact might be offset by future transporta-
tion technologies, such as the adoption of electric trucks.

4. Conclusions

In this study, we examined the impacts of increasing the use of
woody biomass for electricity generation on timberland areas across the
eastern US through the year 2035. Our findings suggest that timberland
areas within 150 miles (241 km) of the studied power plants would
rovide adequate sustainable woody biomass resources to support a
ore than three-fold increase in the total biopower generation across

hese US states, compared to the 2017 level. Such increases would
equire growth in the level of biomass resources for GWh biopower
eneration, consistent with historical experience. Using woody biomass
or energy generation can potentially reduce the electric sector’s carbon
ootprint (Böhringer and Rosendahl, 2022). Moreover, providing a mar-
et for low-value timberland resources can empower local economies
nd improve forest health, diversity, and resilience (Mirzaee et al.,
022; Susaeta et al., 2011; Soliño et al., 2018). However, a biomass-
ap solution that limits biomass harvesting for electricity generation to
o more than 80% of the annual net biomass growth in a region would
ome with a significant transportation cost trade-off.

Our analysis identifies sourcing decisions that support the optimized
evel of biopower electricity generation with minimal resource impacts,
nsuring satisfaction of carbon neutrality and forest sustainability con-
traints. Our findings suggest the potential to maintain carbon neu-
rality and sustainability goals while increasing biopower generation
nder multiple policy interventions supporting increased biopower gen-
ration. This analysis provides evidence of the potential for increased
se of biomass resources for bioenergy generation in the next decade.
owever, such increases would come with possible challenges that
eed to be considered by policymakers to ensure a sustainable future
or bioenergy production.
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