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Abstract 
Phenotyping of animals is a routine task in agriculture which can provide large datasets for the functional annotation of genomes. 
Using the livestock farming sector to study complex traits enables genetics researchers to fully benefit from the digital transformation 
of society as economies of scale substantially reduces the cost of phenotyping animals on farms. In the agricultural sector genomics has 
transitioned towards a model of ‘Genomics without the genes’ as a large proportion of the genetic variation in animals can be modelled 
using the infinitesimal model for genomic breeding valuations. Combined with third generation sequencing creating pan-genomes 
for livestock the digital infrastructure for trait collection and precision farming provides a unique opportunity for high-throughput 
phenotyping and the study of complex traits in a controlled environment. The emphasis on cost efficient data collection mean that 
mobile phones and computers have become ubiquitous for cost-efficient large-scale data collection but that the majority of the recorded 
traits can still be recorded manually with limited training or tools. This is especially valuable in low- and middle income countries and 
in settings where indigenous breeds are kept at farms preserving more traditional farming methods. Digitalization is therefore an 
important enabler for high-throughput phenotyping for smaller livestock herds with limited technology investments as well as large-
scale commercial operations. It is demanding and challenging for individual researchers to keep up with the opportunities created by 
the rapid advances in digitalization for livestock farming and how it can be used by researchers with or without a specialization in 
livestock. This review provides an overview of the current status of key enabling technologies for precision livestock farming applicable 
for the functional annotation of genomes. 
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Introduction 
One of the ‘grand challenges’ in modern biology is to under-
stand the genetic basis of phenotypic diversity within and among 
species [1]. The livestock sector can provide an advanced infras-
tructure for high throughput genotyping and phenotyping of ani-
mals. Although big datasets from livestock have been collected 
since the beginning of the 20th century the rise of precision farm-
ing and overall digitalization of society mean that the amount of 
data recorded about animals and their environment on farms is 
growing at a rapid pace [2]. Precision livestock farming can here 
be defined as a process where data from the sensors generate 
feedback to the controller so that he or she can make informed 
decisions based on a decision model in order to generate a set of 

desired responses in the herd being managed [3]. For breeding pur-
poses industrial scale genotyping of livestock is performed simul-
taneously [4] which can provide access to 45 k Single-nucleotide 
polymorphism (SNP) genotyping at a cost of <30 euro per animal 
if performed in collaboration with breeding organizations [5]. 
This article will give an overview of how farming practices in a 
digitalized society can enable large-scale studies on phenomics 
in high as well as low-income settings as digital technology has 
become commonplace on a global scale. 

Scope 
This narrative review will focus on four key areas for the utiliza-
tion of livestock farming data for high-throughput phenotyping of 
animals:
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• The types of measurements used in farming applicable for 
phenotyping in genetics research. 

• The development of new sensors for the digitalization of on-
farm equipment generating data which are currently col-
lected in herd management systems on farms to support on-
farm operations [6]. 

• How the digitalization of agriculture and precision livestock 
farming generate contextual information about farm animals 
and their environment. 

• Describing the role of breeding organizations and breeding 
programs which may be utilized for high-throughput pheno-
typing. 

The aim of this review is to narratively describe how technology 
and precision livestock farming enables the measurements nec-
essary for high-throughput phenotyping. As a technology oriented 
review this scope excludes the process of converting a set of 
measurements into an observed phenotype or the calculation of 
breeding values. 

Phenotype measurements in agriculture 
The observation and quantification of genetic traits is a key 
activity when selecting animals for breeding. In this review we 
highlight five different kinds of measurements currently in use 
for livestock breeding and precision livestock farming. 

• One time measurements – a measurement made once for 
persistent characteristics such as polledness. 

• Longitudinal data – repeated measurements giving a single 
value such milk yield used in milk recordings [7]. 

• Behavioural measurements measuring the displayed behaviour 
of an individual [8]. 

• Endophenotypes or intermediate phenotypes using biomark-
ers which may be more accessible or stable than measured 
phenotypes for example used when studying genetic suscep-
tibility to a metabolic disorder. 

• Contextual phenotyping where measuring the environmental 
context of an animal can enable measurements of traits 
related to phenotype plasticity [9] and robustness [10]. 

From historical records easily recorded characteristics con-
cerning the exterior of an animal has been very important to 
define a breed. The physical form of an animal is often correlated 
with other adaptions to the local environment or farming prac-
tices. It is therefore often possible to use historical records to iden-
tify phenotypes distinct for specific geographical regions or breeds 
which can provide valuable information regarding the complex 
interplay of artificial selection, population admixture, inbreeding 
and genetic drift for genetics research [11]. Longitudinal data 
collection requires more persistent efforts and herd books and 
milk recording organizations became prominent in the early 20th 
century [7]. Data collection efforts enabled organizations to track 
progress over time and supported the organization of data in 
such ways that more complex traits such as total milk yield per 
lactation could be estimated. Simple collections have evolved to 
modern day breeding programs where a large number of traits 
related to productivity, health, and other production factors are 
being measured which is further described in the section ‘Data 
recording for breeding and advisory organizations’. 

An area receiving increased attention in livestock research is 
the automated collection of behavioural information. Tempera-
ment is often used as a composed trait for selection of animals 
in breeding programs but usually relies on personal observations 
which do not generally work well to enable the identification 

of separate genetic traits [12, 13].With improved animal track-
ing within farms high-throughput phenotyping of behaviour has 
become more viable. This tracking can take the form of movement 
sensors [14] or gate passages using farm equipment such as 
autonomous milking systems and smart gates [15] as well as by  
using novel solutions relying on machine vision [16, 17] to visually  
track animal behaviour which makes it possible to study even 
complex social behaviour in a production environment [14, 18]. 

Endophenotypes are commonplace in medicine as samples 
are taken and analysed in the healthcare system. For specific 
applications a similar approach can be taken for livestock and 
some farms have invested in compact on-farm labs like the Herd 
Navigator [19]. Such machines are expensive but make it possi-
ble to measure hormones and metabolites such as progesterone 
to detect heat, lactate dehydrogenase to detect early mastitis, 
betahydroxybutyrate for ketosis and urea to adjust protein intake 
for animals. 

Contextual information is another area where digitalization 
and automation are drastically reducing costs of data collec-
tion. Open data strategies in the public sector and funding for 
ambitious data collection projects such as the Sentinel-2 satel-
lites mean that substantial amounts of data regarding weather, 
biomass growth and water availability are now available on a 
weekly basis down to a resolution of 10 × 10 m [20]. These data 
can be combined with data from other sources such as feed 
producers, fixed environmental sensors and geospatial data from 
satellites and/or drones, this have created an emerging field of big 
data within precision livestock farming using remote sensing for 
both feed production and herd monitoring [21]. When combined 
with animal data this information makes it possible to measure 
traits related to phenotypic plasticity [8, 22] or robustness [10, 
23] as the expressed phenotype can be put into a context of the 
environmental conditions which have shaped the animal. 

Economic considerations of phenotyping in 
livestock farming 
The economic value of an individual is directly related to the 
amount of money which can be invested in monitoring it. An 
estimate of global total output value of farmed animals based on 
the FAOSTAT database operated by the Food and Agriculture Orga-
nization of the United Nations [24] indicate that the global eco-
nomic value of livestock outputs are dominated by the value that 
cattle outputs generate (34% in 2018), followed by chickens (21%), 
pigs (17%), aquaculture (14%), other livestock (12%), and sheep 
(2%) [25]. Using a similar approach to the methodology presented 
by Schrobback et al. the annual production value per producing 
animal can be calculated (supplementary material 1). The use of 
annual income per animal used in production is necessitated by a 
lack of data on culling rates and the way total population statistics 
are being aggregated on a species level rather than production 
system or type of output. Dairy from cattle generates the highest 
annual income per individual in production with a median of 1789 
USD per head and year. Meat from cattle generates the second 
highest economic value with a median income of 1097 USD per 
head. In comparison a pig brings in a median value of 171 USD per 
head, sheep 102 USD per head, goat meat 87 USD per head, and 
chickens a median of 4 USD. Goats used for dairy bring in 121.8 
USD per animal and year while sheep used for dairy are reported 
to generate an annual value of 83.1 USD during their productive 
years. To better display the variation in production value between 
countries, Fig. 1 provides a set of violin plots displaying the distri-
bution of reported income per product in countries reporting data 
to FAOSTAT, Table 1 display the median value, standard deviation
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Figure 1. Violin plots of the food items produced by species included in the review. As indicated by table 1 and 2 the variation of annual production 
value is lower among European Union members but median production values are similar (FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO. Extracted 
from: https://www.fao.org/faostat/en/#data. Data of Access: 2024-06-27). 

and number of reporting countries in total and Table 2 the same 
statistics but for the single European market. A link to the calcula-
tions and source data is available in Supplementary Material 1. It  
is important to note that this data describe revenue per producing 
animal and year and not the overall income or profitability of the 
animals. A dairy cow will join the productive population at ∼2 
years of age but will remain productive for several years, while 
a chicken for meat production will only live for 50–60 days. On a 
herd level this mean that individual tracking where a sensor is 
attached to an animal is more attractive for long-lived animals 
generating value over multiple years while fixed installations 
that remain in place as individuals are slaughtered and replaced 
become more attractive for short-lived production animals. This 
is also reflected in this review as cattle production with its high 
economic value and longevity of production animals make use 
of a wide variety of wearable devices or fixed installations with 
identification provided by a transponder or radio-frequency iden-
tification (RFID) tags worn by individual animals. Emerging fields 
such as video surveillance and sound monitoring will however 
have a higher value for high-throughput production of animals 
such as broiler chickens and pig farming as recording devices 
can be used for multiple generations of animals each year which 
can be combined with existing fixed installations and RFID-based 
identification [26]. 

Data recording for breeding and advisory 
organizations 
For inclusion in a breeding program any trait measured must 
be heritable and of sufficient economic importance to justify 
the costs of measuring. To ensure that enough animals can be 
measured to accurately calculate genomic breeding values there 
must be a reference population of sufficient size to perform 
the calculations [27]. Relatively straightforward traits to measure 
are therefore preferred in data collection for breeding evalua-
tions. Over time the scope of traits targeted for selection have 
moved away from being purely production oriented toward a 
more balanced breeding goal covering aspects such as health and 
fertility in addition to productivity traits [7]. The Nordic countries 
have long held a leading role in this process [7, 28] making the 
Nordic Total Merit Index a good example of the scope of such a 
modern breeding program with 83 different measurements being 
performed to calculate 16 different sub-indices. These sub-indices 
concern milk yield, growth, fertility, birth index, calving index, 
udder health, general health, claw health, frame, feet and legs, 
udder, milkability, temperament, longevity, youngstock survival 
and saved feed (see supplementary materials 2, Table 2 for a 
full list of measurements). For a more comprehensive overview 
of traits currently used in breeding programs and how they are 
measured, the International Bull Evaluation Service (Interbull)
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Table 1. The median value of annual production (USD) per productive animal by item produced, standard deviation (SD), number of 
productive animals (slaughtered, milked or egg-laying during the year) and number of countries reporting data to FAOSTAT (FAO. 
FAOSTAT. License: CC BY-NC-SA 3.0 IGO). 

Item USD per head SD Nr of Animals (million) Nr of Countries 

Hen eggs in shell, fresh 22.8 24.9 5485.9 61 
Meat of cattle with the bone, fresh or chilled 1096.8 829.4 50.6 38 
Meat of chickens, fresh or chilled 4 2.7 21611.7 29 
Meat of goat, fresh or chilled 87.1 60.3 35.6 20 
Meat of pig with the bone, fresh or chilled 171.2 112.7 986.3 35 
Meat of sheep, fresh or chilled 101.9 111.1 311 30 
Raw milk of cattle 1788.6 2942.3 111 82 
Raw milk of goats 121.8 156.9 33.2 24 
Raw milk of sheep 83.1 98.4 65.6 18 

Extracted from: https://www.fao.org/faostat/en/#data. Date of Access: 2024-06-27). The global data highlight a large variation in annual production value and 
the median value has therefore been highlighted over the mean value, see supplementary material 1 for a breakdown of data on the national level. 

Table 2. The median value of annual production (USD) per productive animal by item produced, standard deviation (SD), number of 
productive animals (slaughtered, milked or egg-laying during the year) among the European Union members which report data to 
FAOSTAT (FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO). 

Item USD per head SD NrAnimals (million) NrCountries 

Hen eggs in shell, fresh 27.8 4.6 5 2 
Meat of cattle with the bone, fresh or chilled 1057.6 437.5 7.8 12 
Meat of chickens, fresh or chilled 3 0.6 464.8 3 
Meat of goat, fresh or chilled 57.2 41.9 1.4 5 
Meat of pig with the bone, fresh or chilled 168.7 27.8 140.2 13 
Meat of sheep, fresh or chilled 88.8 39.8 17.4 11 
Raw milk of cattle 3871.4 1006.7 14.9 23 
Raw milk of goats 118.2 111.4 4.7 7 
Raw milk of sheep 153.2 131.9 16.6 6 

Extracted from: https://www.fao.org/faostat/en/#data. Date of Access: 2024-06-27). The global data highlight a large variation in annual production value and 
the median value has therefore been highlighted over the mean value, see supplementary material 1 for a breakdown of data on the national level. 

host a compiled list of traits used in various national genetic 
evaluations from member organizations ( https://interbull.org/ib/ 
geforms). A more historical perspective of breeding programs is 
provided by the review of Miglior et al. [7] and provides a valuable 
introduction to the field for geneticists looking to utilize data from 
livestock in their research. 

International standardization of testing is a major challenge for 
breeding organizations as exemplified by the differences in proce-
dures used in national genetic evaluations submitted to Interbull. 
Researchers with different specializations, or working in different 
regions, will therefore have to rely on different nomenclatures 
and standards when using production data for high-throughput 
phenotyping of animals. It is therefore important to connect 
phenotypes collected from animals in recordings and breeding 
programs with definitions from ontologies such as the animal 
trait ontology [29] and databases such as the Animal QTLdb [30] 
to link the applied animal science to knowledge structures used 
in genetics, molecular biology and the functional annotation of 
genomes. 

Establishing sustainable animal recordings in low- or mid-
dle income countries have proven to be challenging as a lack 
of economically sustainable infrastructure makes it difficult to 
maintain records over long periods of time and return value of the 
recordings to farmers. Conceptually the challenges of establishing 
reliable animal recordings in low-or middle income countries 
can be described as a wicked problem [31] where  the lack of  
organized recording makes it difficult to obtain a premium val-
uation for premium animals which in turn have made it difficult 
to obtain the funds necessary to organize large-scale recording 
operations. Breaking this cycle require concentrated efforts by 

interdisciplinary teams combining internet and communications 
technology to develop accessible recording solutions with ade-
quate measurements selected for recording at an acceptable price 
[32, 33]. From a purely technical perspective most recordings used 
for breeding evaluations are relatively simple and can be carried 
out without access to advanced technical infrastructure. Using 
the Nordic Total Merit Index as an example most measurements 
(58 out of 83) rely purely on observations and the date of events 
being recorded (Table 3). A further 15 require a more careful 
evaluation of the animal prior to an index or evaluation result 
being recorded. In total only 5 out of 83 traits can be considered 
difficult to measure from a technical perspective, those traits are 
related to measurements of milk composition during different 
lactations [34, 35]. 

In addition developments in the internet and communications 
technology sector enables farmers to perform more accurate 
recordings while breeding organizations and advisory organiza-
tions can quickly act on the information provided by the farmer 
and provide value adding services via mobile phones [36, 37]. 
Given the reliance on basic measurements such as the recording 
of time, volume, weight, height, and behaviour the combination 
of a high people-to-animal ratio and increasing availability of 
mobile phones means that individual farmers and community 
breeding programs can engage in citizen science [38] to provide 
extensive phenotyping of local genotypes in low and middle-
income countries (LMICs). The number of mobile phone users in 
rural areas has grown rapidly in the previous decade and with 
on-farm recording systems in place [39, 40] community programs 
for breeding may thereby provide an important contribution to 
phenotyping of indigenous livestock populations in LMICs as
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Table 3. Measurement types and training requirements for data recording according to Nordic Total Merit Index. 

Measurement type # Training requirements # 

Recording 58 Low 39 
Evaluation 15 Medium 15 
Weighing 5 High 29 
Chemical analysis 5 Total number 83 
Total number 83 

Low training requirements mean that measurements can be done with minimal training, medium with specific training and high requires a trained 
professional. Very high training is used to signify the need to conduct a full research project prior to obtaining the desired data. For a full breakdown of traits  
and requirements see supplementary material 2 . 

well as strengthen rural economies [ 41]. This form of citizen 
science [42, 43] may therefore become a major contributor to the 
largescale characterization of phenotypes in indigenous livestock 
populations as well as direct feedback to the farmers. 

Digitalization of on-farm equipment 
A sensor is any device that detects changes in its environment 
and transmits a resulting impulse. The rapid advancement of 
information and communication technology mean that devices 
that detect a change in its environment, convert it to a digital 
signal and transmit it to a computer processor now make up a 
large proportion of all sensors. The computer processor then run 
code which enable information to be analysed, routed or stored 
as appropriate by the design of the device. Many digital devices 
are stand-alone systems consisting of one or more sensors, a 
processor and a display or other interface to interact with the 
user or other devices. Weather stations used on many farms are a 
common example of such self-contained devices with a tempera-
ture sensor and a humidity sensor attached to a processor which 
converts the digital signal to numbers which are immediately 
displayed on a small screen. 

Connecting multiple devices into a network requires communi-
cation protocols to define how information is received and inter-
preted when exchanged between components of the network. 
Large equipment manufacturers such as DeLaval International 
AB, Lely Industries N.V. and GEA Group AG are transforming 
their business models into not only providing singular pieces of 
equipment but also a networked system of devices which together 
provide the farmer with improved situational awareness, decision 
support and automation within a proprietary network. From a 
data collection perspective this means that the availability of data 
collected from farming equipment is dependent on the relation-
ship between farmers and equipment manufacturers as well as 
national legalization or adherence to best practice procedures 
for data ownership and control in a rapidly evolving landscape 
[44, 45]. Organizations such as the International Committee for 
Animal Recording (ICAR) also has an important role in the devel-
opment of this landscape as exemplified by the development of 
the Animal Data Exchange standard being implemented for dairy 
through the International Dairy Data Exchange Network which 
provides a standard and infrastructure for data exchange between 
machines in the dairy sector [46]. 

Providing a high-level overview of technology available 
for phenotyping is complicated by farming equipment being 
developed for farmers and advisors rather than the scientific 
community. Publications made by agricultural scientists may cite 
the agricultural equipment in scholarly papers but the citation 
standards for equipment are not suited for being readily identifi-
able in systematic reviews using databases such as Web of Science 
or Scopus as the Methods & Methods and Introduction field where 
equipment names and manufacturers are listed are not covered in 

the database. Google scholar provides better coverage but makes 
it impossible to define clear inclusion criteria for a systematic 
review. Thematic surveys and grey literature produced in different 
projects can however provide valuable snapshots of technology 
developments and their applications within smart farming [47]. 
ICAR and the Horizon2020 EU project Data Driven Dairy Decisions 
for Farmers (4D4F) (Fig. 2) have produced such surveys focused 
on ruminant animals in 2018 [48, 49] providing an overview of 
traits and applications of smart farming equipment and sensors. 
A review of on-farm recording tools for smallholder dairy farming 
in developing countries was published in 2024 but focused on 
data curated from scientific literature which likely contributed 
to the heavy emphasis on recording devices developed by 
researchers [40]. 

There is a large number of manufacturers with ICAR certified 
equipment and a majority of the equipment covered by the survey 
(Fig. 3) [48] are recording milk weight, in the vast majority of cases 
these machines are also designed to enable sampling of milk 
for external analysis on accredited laboratories with information 
also passed on to breeding organizations. In addition many of 
these machines automatically measure the conductivity of milk 
which provides early warning of potential mastitis [50]. Looking 
at the fields of application covered by the study (Fig. 4) milk  
sensors make up the dominant application of tools (99 out of 
155), followed by health measurements (42/155), fertility (25/155), 
positioning and body condition (22/155), feeding (8/155), calving 
(7/155), and emissions (2/155). 

The 4D4F technology warehouse (https://www.4d4f.eu/content/ 
technology-warehouse) provides an overview of commercial 
technologies available to monitor and support cow health and 
performance. This definition includes ‘smart’ equipment such 
as automatic feeding equipment which may not necessarily 
generate data for trait recording. In total the warehouse compile 
information on 137 different devices submitted during the 
duration of the project [49]. A noticeable difference in this dataset 
is that a large number of automated feeding devices are recorded 
but only 7 are registered in the ICAR dataset for trait recording 
of feed intake. In total 31 devices for automatic feeding, 24 for 
automatic milk feeding of calves and 7 devices for eating time are 
listed. Other common areas of utilization for devices identified by 
4D4F are activity measurements (24) and mastitis (17) followed 
by a large number of use areas with a handful of devices in each 
area. 

Restl et al. [40] produced a systematic review of on-farm record-
ing systems for smallholder dairy farming. Manual recording 
using a mobile phone was the dominant form of data recording 
with only a single Internet of Things (IoT) device (a scale mecha-
nism embedded onto a wheel-barrow to measure milk production 
of individual cows) was identified in the study. Most recording 
systems enabled collection of data on milk production (14 out of 
the 19 systems with reported recording capabilities followed by
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Figure 2. Number of devices capable of recording different traits. Some devices record a large number of different traits meaning that the total number 
of traits measured is higher than the number of devices in the dataset. 

Figure 3. Trait analysis aggregated by field of application. 

reproduction (10/19), feeding (6/19), economic performance (3/19 
and calf information (2/19). 

Looking at the development of equipment covered by these 
three studies equipment can broadly be categorized into four 
types of equipment. 

• Digitalized farming equipment where embedded systems and 
new sensors enhance equipment used for example for milk-
ing systems, feeding systems and gates which were previously 
analogue and unable to collect data. 

• New wearable devices with sensors. 
• Camera and automated monitoring using image analysis. 
• Centralized services offered by laboratories and advisory 

organizations. 

Digitalized farming equipment 
Large equipment manufacturers like the aforementioned DeLaval, 
Lely and GEA have a long history of supplying equipment 
for farms. Their devices have grown increasingly ‘smart’ by 
incorporating sensors generating digital input which is processed 
by embedded computers that control the machine and enables 
complex operations such as the automated attachment of suction 
cups to cow teats or control over animal activity by smart gates 
that provide conditional access to parts of the barn or feed 
depending on pre-defined rules. The digitalization of equipment 
also mean that information can be exchanged between different 
devices on the farm and major equipment manufacturers now 
offer software branded as farm or herd management systems
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Figure 4. Devices by category included in the 4D4F technology warehouse survey (137 devices out of which some can be used for multiple purposes). 

such as DeLaval DelPro, Lely Time for Cows (T4C) and GEA 
DairyPlan. These management systems provide farmers with 
information to support their daily operations. 

A single piece of equipment may also host a large number of 
different sensors to provide information to the farmer and other 
pieces of equipment as equipment such as milking stations and 
feeding systems interact with a large number of animals each 
day, thus making it economically feasible to incorporate devices 
that would be prohibitively expensive if used to monitor a single 
animal. As a result, especially milking equipment and associated 
devices are growing increasingly complex and capable of measur-
ing not only the weight of milk produced but also record values 
concerning milk composition (fat, protein, and lactose), electri-
cal conductivity, flow rate, peak flow and somatic cell count. 
Additional measurements of endophenotypes such progesterone 
to detect heat, lactate dehydrogenase to detect early mastitis, 
betahydroxybutyrate for ketosis and urea to help farmers adjust 
the protein intake of animals can also be conducted. 

Wearable devices 
The first sensors to measure parameters about single individuals 
were developed in the 1980s [51]. From a practical perspective, 
wearable devices can be thought of as one or more sensors, 
a computer processor, memory and one or more modules for 
input/output. These devices must be powered and protected from 
the surrounding environment they are exposed to during the daily 
life of the animal. A good example and introduction to how a 
wearable device can be designed integrating multiple sensors and 
a Bluetooth low energy module with a built-in processor and 
memory has been published by Pandey et al., [52] documenting 
how the team developed behavioural monitoring tool for pig farm-
ing capturing movement, sound and temperature for processing 
by machine learning algorithms. 

Compared with medical devices, cost control and servic-
ing requirements are much more limiting for farm animal 
applications, commercially available devices for livestock are 
therefore largely devoted to measuring physical parameters 

with most devices focusing on movement and/or temperature 
which may sometimes be combined with additional information 
such as sound, pH, or light [48, 49, 51, 53]. These parameters 
are applicable for a large number of areas and an equipment 
manufacturer targeting the agricultural sector can thereby 
purchase generic sensors and other electronics with the livestock-
specific component being the physical specifications and the 
development of algorithms interpreting the data to measure 
outputs such as activity, heat or calving. The development of 
biosensors measuring endophenotypes from sweat, blood or other 
body fluids have been envisaged but have not seen widespread 
commercialization with the exception of boluses measuring pH in 
the rumen of cows. The reliance on a pH probe which degrade over 
time however mean that pH measurements are only available for 
the first 100–200 days while the bolus remains active measuring 
temperature and movement in the rumen for up to six years [54]. 

For livestock there are six common locations for position-
ing wearable sensor devices, ear, neck, leg, tail, vagina and, for 
ruminant animals, the rumen. For any sensor there is a trade-
off between cost, size, weight, battery life and power usage. The 
location of the device and size of the animal it is developed for 
imposes a physical limit to the size of the battery and different 
manufacturers use different hardware as well as different pri-
orities between the form of the device, sampling intervals and 
the power of the radio. This mean that for each sensor location 
there is a range of device with different sensors, battery lives, 
communication ranges and sampling intervals to choose from, as 
shown in Table 4. 

Vision and sound systems in the barn 
Fixed mountings of cameras or sound recorders in the barn can 
provide a cost efficient way of tracking animals, their behaviour 
and feed intake [55]. For pigs and poultry where the herd sizes are 
larger and individual value per animal is lower these approaches 
are especially important as a smaller number of cameras or 
microphones can be used to maintain surveillance over a large 
number of animals [56, 57]. Machine learning techniques make it
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Table 4. A summary of sensor locations, input measurements from sensors, output measurements calculated using algorithms, battery 
lifetime and range of communications. 

Sensor location Input measurements Output measurements Time Range Intervals 

Ear tag Accelerometer Activity, ruminating time, location, heat 
index, temperature and eating time 

2–3 years 200–500 m 15 minutes to 
every 2 h 

Temperature 
Neck collar Accelerometer Activity, ruminating time, location, heat 

index, temperature, eating time, lying 
time, standing time and step count. 

6 months to  
10 years 

200–1000 m Continuous to 
every 2 h 

Microphone 
Temperature 

Leg tag Accelerometer Activity, standing time, lying time, 
walking time, step count, heat index 
(based on movement). 

2–10 years 50–1000 m Continuous to 
every 2 h 

Temperature 
Tail Accelerometer 60 days - 5 years 2000 m 
Vagina Temperature Calving (tail movement), Calving 

(temperature), Calving (ejection of sensor) 
2 years 1000 m 

Light 
Bolus sensors Accelerometer Activity, temperature, drinking, pH and 

calving 
3–6 years 10–1000 m 15 minutes to 

every 1 h 
Temperature 
pH Sensor 

The table is a summary of what is currently achievable among commercially available sensors mounted on different locations of a cow and provides an 
interval covering the sensors reviewed by Lee et al. [47 ]. The interval ranges from the best in class for each parameter. 

Table 5. Examples of applications of cameras and imaging methods used to generate data (Fernandes et al.). 

Specie Application Image signal 

Cattle Mastitis Infrared 
Digital dermatitis Infrared 
Body temperature Thermography 
Gait and body measurements 3D 
Weight 3D 
Coat and conformation Visible light 
Body condition Visible light, thermography and 3D 

Poultry Behaviour Visible light and 3D 
Shape D 

Pigs Tracking Visible light and 3D 
Behaviour Visible light and 3D 
Weight Visible light and 3 D 
Gait and body measurements 3D 

possible to transform non-numeric information such as images 
into computable data. The emergence of Convolutional Neural 
Network (CNN) and other deep learning techniques have greatly 
increase the interest for Computer vision for high-throughput 
phenotyping in agriculture [ 58, 59]. When sold commercially 
many applications are marketed as ‘Artificial intelligence’ or ‘AI’. 
In practice however each device consists of a recording device 
connected to an on-board computer or an external server or 
cloud computing service running a model for classifying data 
or making predictions based on the feed generated from the 
recording device. The mathematical theory behind commonly 
used machine learning is complex and the training of a model 
for analysis is demanding in terms of data collection, computing 
power and memory. The popularity of CNNs can at least partially 
be explained by the increased availability of data combined with 
CNNs requiring fewer assumptions and less curation of data 
prior to performing the supervised learning steps to create a 
prediction model. Multiple toolkits and services are however 
available to automate or facilitate the process to a level where the 
process is no more complex than any development of prediction 

models with supervised learning such as linear regression. As 
these models can be used on mobile phone cameras or other 
consumer grade recording devices these models create significant 
new opportunities for phenotyping at a low cost. 

A key challenge working with the commercialization or 
widespread deployment of camera devices and sound recording 
systems is the adjustment to different barn environments with 
different ceiling height, light conditions and equipment obscuring 
a clear view. Two main approaches are taken to deal with these 
limitations. Commercial systems like the BCS camera (DeLaval 
BCS™, DeLaval, Tumba) and Cattle Feed InTake (CFIT) [60] camera 
have clearly defined installation requirements requiring digital 
cameras to be installed looking straight down facing a floor 
or feeding tray with good contrast versus the animals or feed 
measured by the device. Another alternative is transfer learning 
where a model has been trained on data from multiple sources 
and location specific training is then performed at a much smaller 
scale during the installation using a much smaller dataset [61]. 

Compared to wearable devices the cost of cameras per animal 
monitored is lower and a review by Oliveira et al. [59] show that
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among a majority of studies done in recent years for using deep 
learning and computer vision for phenotyping animals pigs were 
the most common target of research (21/44) followed by dairy 
cattle (11/44), beef cattle (6/44), poultry (5/11) and goats (1/44). 
For applications where cameras have been tested visible light 
cameras providing imagery in 2D or combined with some kind 
of depth sensor are the most common as they enable animals 
to be tracked looking for abnormal behaviour, activities, social 
interactions and locomotive issues such as lameness. Infrared 
cameras have also been used either to provide better data in low-
light conditions or as a way to measure abnormal temperatures on 
parts of the body which may indicate mastitis or digital dermatitis. 
Numerous detailed reviews on these applications and the quality 
of data extracted from imagery using different algorithms have 
been published in recent years [17, 58, 59]. 

Centralized services 
Breeding organizations and advisors often collaborate with lab-
oratories, slaughter houses and other service organizations to 
obtain data. Laboratory milk analysis, conformation recording, 
animal identification, genomic services and carcass evaluations 
are examples of services often provided in this way. In some cases, 
it would be difficult to replicate the services elsewhere, in others, 
digitalization, automation and miniaturization mean innovations 
in wearable device or digital farm equipment may supersede or 
replace centralized services by putting them closer to the farmer. 
As early as 2006, experts analysed the potential impact of the 
small but growing use of on-farm decision-support systems and 
how automated on-farm recording systems would impact the 
collection of data for breeding programs [62]. Poor data quality 
caused by a lack of machine calibration, a lack of communication 
between on-farm systems and Dairy Herd Improvement Agencies 
and the risk of abundant low-quality information crowding out 
more valuable information were highlighted as key challenges for 
future breeding programs. 

Simultaneously the employment of specialists working with 
advanced tools and incentives to remain in business create incen-
tives and opportunities for new services to be developed by service 
providers. Utilizing artificial intelligence to automatically analyse 
animal-based welfare indicators in abattoirs have been proposed 
as a more cost-effective and objective method for welfare surveil-
lance in swine production compared with on-farm evaluations 
[63]. In a similar vein automated image analysis in abattoirs have 
been proposed as a more objective way of grading muscle size, 
tenderness, intramuscular fat and marbling in beef [64], pork [65] 
and lamb production [66]. 

Laboratory services for milk testing using Mid-infrared 
spectroscopy (MIRS) showcase the dynamic relationship between 
on-farm testing and centralized services. MIRS function by 
measuring the proportion of infrared light being absorbed by 
different molecular bonds in the sample. Using different mathe-
matical techniques and signal processing this creates a spectrum 
with absorption as a function of wave lengths between 2500 and 
25,000 nm which can be used to estimate the concentration of key 
components in the milk sample [67]. MIRS can be used for a wide 
variety of applications but many agricultural organizations have 
sub-contracted service providers for analysis of milk samples 
to report the computed measurements of key components 
such as fat, protein and somatic cell count without storage 
of the full spectral data [68]. This limited set of services can 
now be performed on farms using modern milking equipment 
and machines leading to the challenges described by Wade 
in 2006 [62]. Initiatives such as OptiMIR, HappyMoo [69] and  

D4Dairy [70] have however combined full spectral data with 
machine learning techniques and on-farm data to greatly expand 
what can be measured using MIRS. Biomarkers so far tested 
with MIRS include markers for energy deficit energy deficit 
(citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), 
ketosis (β-hydroxybutyrate and acetone), mastitis (N-acetyl-
β-d-glucosaminidase activity and lactate dehydrogenase), and 
fertility (progesterone) [71], in addition research indicate that 
predictions from MIRS data may also be capable of replacing 
direct measurements of functional traits difficult to measure like 
nitrogen efficiency [72] and methane gas emissions [73]. 

In addition to data collection of full milk spectra, the successful 
estimation of endophenotypes or functional traits from MIRS 
requires large datasets for technical standardization, calibration 
and selection of a prediction model suited to the biomarker being 
measured [67, 69, 70, 74]. Given the current emphasis on “AI 
models it is also worth noting that simpler more interpretable 
models like partial least squares regression, or least absolute 
shrinkage and selection operator may equal or outperform the 
predictions of neutral networks [74]. The costs of operating a 
lab able to routinely produce high quality MIRS data and the 
need to calibrate prediction models for each endophenotype being 
studied mean that the start-up costs for any new phenotype 
measured in a population using MIRS will be high but any such 
investment will also see a high degree of scalability once validated 
and implemented. 

Contextual phenotyping and remote monitoring 
Phenotype plasticity is the ability of an organism to change in 
response to stimuli or inputs from the environment. Phenotypic 
plasticity can be a source of ‘noise’, or confounding variation in 
experiments [9]. In livestock farming however, phenotypic plastic-
ity is often in itself a trait of relevance to farmers and breeders as 
traits such as resilience are desirable and heritable characteristics 
of an animal [75]. Heritability of traits as measured by breeders 
is also dependent on animal environment interactions leading to 
decreased heritability estimates of traits for commercial livestock 
when imported from temperate climates to the tropics [76]. These 
challenges are especially clear in extensive production systems 
where animals to a greater degree are dependent on their local 
environment [77]. For researchers integration of data may help 
researchers in both applied agricultural sciences and more fun-
damental genetics research regarding environmental interactions 
to contextualize phenotype data and test the variance and covari-
ance structure under a wider range of conditions, ideally using 
continuous environmental gradients [78]. With sufficiently large 
datasets researchers can thereafter start untangling correlated 
phenotypes, separating phenotypes such as successful grazing 
behaviour versus high metabolic efficiency or resilience towards 
parasites. 

Much work is still needed on developing frameworks to for-
mulate data-driven questions and identifying suitable research 
environments where information about animals, herds, farm-
ing operations and local environment can be merged to capture 
phenotype plasticity [21]. This work does not only require the 
integration of new sensor technologies but also the selection of 
algorithms suited for different classification and prediction tasks. 
Machine Learning methods are widely used in genetics [79] and  
described further in the phenotyping methods section of this 
review. As datasets become increasingly complex and reliant on 
multiple data sources a shift from regression-based methods to 
methods such as Random Forest or Neural networks can improve 
the scalability of projects by requiring less pre-processing and
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assumptions when selecting a regression model. Kamphuis et al. 
recently published a study exemplifying this by comparing logistic 
regression and random forest for predicting lifetime resilience 
scores [75]. From a methods development perspective, the study 
showed random forest to only provide slightly better classification 
performance but that the method is more scalable for large scale 
project as data requires less pre-processing and optimization to 
achieve this performance. The study therefor does not only exem-
plify the value of data integration from multiple sensors such as 
surveillance drones with automated localizations, identification 
and activity, but also how algorithms for data analysis must not 
only be evaluated on performance but also scalability and ease of 
use [75]. 

Key technologies suitable for providing contextual information 
on pastures have recently been summarized by Herlin et al. [80] 
highlighting that even though the development of sensors for 
livestock primarily have targeted indoor usage there is rapid 
development of new technology for outdoor usage as well. Overall 
the combination of improved batteries, development of drones 
as a platform for video cameras and access to electronic posi-
tioning and transfer systems including RFID, Wireless Sensor 
Networks (WSN), Global Positioning (GPS), the IoT, and Low-Power 
Wide-Area solutions enables farmers, advisors, and researchers 
unprecedented access to data concerning the environment and 
activities of animals on pastures. Of special note is that when 
optical identification and tracking is possible positioning can be as 
accurate as 1–3 m [81] while GPS collars are limited to an accuracy 
of 7–13 m in open terrain while providing robust but less exact 
positioning measurements 19–30 m) in dense forests [80]. 

In addition to sensors tracking animals, remote measurement 
techniques using satellites to monitor crops, land use and live-
stock movements have taken an important role in precision agri-
culture for pasture monitoring and crops production. Services like 
Cropsat (https://cropsat.com/) using satellite imagery from the 
European Sentinel-2 satellites are now freely available on line 
with resolutions down to 10 × 10 m to 60 × 60 m resolution 
depending on the wavelength [82]. These data can be used to 
evaluate biomass growth, surface water coverage for land surveil-
lance and also specifically used for estimations for pasture quality 
[83]. Researchers affiliated with International Livestock Research 
Institute have developed one of the first practical applications 
for satellite imaging being used for pastoral farming in LMICs. 
An Index-Based Livestock Insurance program shows that satellite 
data can provide an early and robust warning of adverse growth 
conditions for livestock [84] giving farmers improved financial 
flexibility to deal with adverse conditions. This example demon-
strates how the integration of satellite data used for economic 
purposes to deal with environmental challenges, if appropriately 
measured, may turn out to be a long-term value for phenotyping 
and research on livestock. Similar models may be applied not only 
for assessing the context of measurement to study characteristics 
such as resilience of animals [75] but also to provide an opportu-
nity for farmers to be compensated for environmentally friendly 
activities taken to ensure biological diversity or wildlife friendly 
farming [85]. 

Conclusion 
Livestock farming and breeding is dependent on large scale data 
collection and analysis. Within the sector, new wearable devices, 
networked services and low cost information and communica-
tions technology make data collection cheaper and more acces-
sible than ever before. New implementations of AI for analysis 

of images, video feeds or sound recordings also make it possible 
to collect data from individual data in species where the low 
economic value and physical characteristics of an individual oth-
erwise would make individual data collection difficult. Through 
collaboration with the agricultural sector, genetics researchers 
can hereby obtain data from thousands of animals at a fraction 
of the cost for raising animals specifically for research. In some 
cases, this data collection is enabled by high-end technology 
requiring significant capital investments in equipment such as 
dairy milking robots or activity sensors. In many cases the key 
to successful phenotyping however lies in the organization of 
farmers, breeding organizations and advisors to collect relevant 
information. Internet access and mobile phones here serve as key 
enablers to make recording schemes viable even in low income 
settings even if much work is still limited to researcher-dominated 
projects. 

Data collection and aggregation also make up a second space 
for AI implementations. Decision support systems rely on aggre-
gation of data from a large number of data sources and their 
implementation in precision livestock farming. Combined with 
the growing interest in the environmental component in live-
stock farming this creates further opportunities for researchers 
to access data for phenotyping. Weather data and environmental 
monitoring from programmes such as the EU Sentinel 2 satellites 
here make it possible to better study the impact of environmental 
factors as well as gene–environment interactions over long peri-
ods of time. Taken together this mean that livestock stock farming 
is a sector which is well positioned to support large-scale data 
collection efforts and use the data both for commercial interests 
and as a contribution to fundamental genetics researching explor-
ing complex traits and the complex interplay between genes and 
environment. 

Key points of the article 
• As genetic data becomes increasingly accessible, pheno-

typing replaces genotyping as the bottleneck in genetics 
research. 

• Economies of scale mean that when performed in col-
laboration with the industry chips such as 45 k EuroG 
MD beadchip for cattle can be used to genotype animals 
for a price of <30 e per animal. 

• Data collection from farm animals benefit from digi-
talization of farming equipment. New wearable devices 
and devices such as cameras or audio recorders using 
machine learning (often refered to as ‘AI’) to generate 
physical measurements and activity data are becoming 
increasingly common. 

• Contextual information is becoming increasingly avail-
able as large open data sets measuring weather, biomass 
and other environmental factors become available as a 
part of the digital transformation of society as a whole. 
Advanced data processing has been a major part of 
agriculture for over a century and in this context the 
emphasis on ‘AI’ can serve to rapidly expand the toolset 
and data sources to augment existing industry infras-
tructures supporting high-throughput collection of data 
which can be used for phenotyping. 

• Even with digitalization most traits used in current 
breeding programs are still of a simple nature. Com-
bined with information and communication technolo-
gies accessible through cheap telephones. This creates 
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an impetus for high-throughput phenotyping in collab-
oration with smallholder farmers in low- or middle-
income countries that are hotspots for genetic diversity 
due to the preservation of indigenous breeds. 
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