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Accurate forest data is essential for informed decisions regarding forest policy and 

management. Traditionally collected through field surveys, this type of data has 

increasingly been produced with remote sensing (RS). RS provides comprehensive 
resource maps produced with data from sensors, including airborne laser scanning 

(ALS) and satellite imagery. However, RS predictions can include large uncertainties, 

including both random and systematic errors. The systematic errors often stem from 

the problem of regression towards the mean, whereby small true values are 
overestimated while large true values are underestimated. These errors pose challenges 

for effective forest management planning since they can lead to wrong assumptions 

about forest conditions, for example, that a forest conforms to average conditions due 
to reduced variability. In this study, we quantified the differences between expected 

and realised outcomes in forest planning informed by RS predictions, specifically 

evaluating inventories based on ALS and optical satellite imagery. The evaluation was 
made according to a business-as-usual scenario with additional concerns about 

biodiversity and carbon sink targets. The satellite-based forest inventory, more 

impacted by both general uncertainty and regression towards the mean, performed 

worse than ALS. Our results indicate that reliance on RS predictions led to 10% to 12% 
overestimated harvest levels, with notable fluctuations over time, alongside a decrease 

in net present value of -6% to -9%. Furthermore, carbon stocks were unintentionally 

reduced in the satellite-based plans, with overestimations ranging from 8% to 24%. 
Across both RS methods, achieving stable development for biologically valuable 

forests proved difficult. Our findings underscore the relevance of these issues for 

forestry and are important to ongoing policy development related to forest monitoring 

and planning. 
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INTRODUCTION 

  

Forests and their ecosystem services are critical for life on Earth (Brockerhoff et al. 2017). The 

provisioning of these services relies on the functioning of forest ecosystems (Hooper et al. 

2005). To ensure a consistent supply of goods such as wood, energy, and non-wood forest 

products, forest managers and policymakers must assess both the likely and preferred future 

trajectories of forest ecosystems. Forest scenario analysis and planning have been developed 

for this purpose, providing methodologies to simulate and schedule possible forest 

management activities while evaluating their economic, ecological, and social impacts (e.g., 

Eggers et al. 2019).  

Forest scenario analysis and planning, irrespective of their scale, depend on data representing 

the current state of forests (Eriksson and Borges 2014). This type of data enables forecasting 

based on various management regimes, including biodiversity and the provisioning of 

ecosystem services (Nilsson et al. 2012). Advances in methods and technology have resulted 

in the widespread availability of wall-to-wall remote sensing (RS) data, presented as forest 

resource maps (e.g., Reese et al. 2003, Hansen and Loveland 2012, Kotivuori et al. 2016, 

Nilsson et al. 2017, Astrup et al. 2019). These maps are used for assessments of the current 

state of forests (e.g. Schuck et al. 2003), policy development (e.g., Seebach et al. 2012), 

mapping the supply of ecosystem services (e.g., Orsi et al. 2020), and input for forest planning 

models (e.g., Flisberg et al. 2022, Wilhelmsson et al. 2022, Ulvdal et al. 2023). The creation of 

forest resource maps typically involves parametric or non-parametric regression models (e.g., 

Andersen et al. 2005, Zald et al. 2016), which link RS data, such as laser beam hits at various 

heights or pixel colour, with ground-truth measurements, such as basal area from geo-

positioned field plots. These models are applied to larger areas, producing predictions for all 

raster elements in the wall-to-wall map. However, this model-based RS inventory approach 

introduces uncertainty-related challenges. Like most inventory methods, random errors affect 

the data quality. However, perhaps more influential is the issue of regression toward the mean 

(Stigler 1997, Barnett et al. 2005). 

Regression toward the mean causes models to overestimate small true values and underestimate 

large ones, reducing the variance in predicted values compared to the true values (Ståhl et al. 

2024). When such errors also correlate with the true values rather than the predictions, they are 

classified as Berkson-type errors (Carroll et al. 2006, Kangas et al. 2023). Errors of Berkson-
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type in RS-based predictions have been shown to influence forest planning results, e.g., 

regarding the final layout of harvest areas when using spatial optimisation on erroneous data 

(Islam et al. 2012). Various methods, including calibration and imputation, have been explored 

to mitigate these errors. For instance, the landscape distribution of stem volume can be 

preserved by imputing RS-based predictions with national forest inventory plot data (Barth et 

al. 2012). Another approach is to apply histogram matching using k-nearest-neighbour 

algorithms (Gilichinsky et al. 2012). Lindgren et al. (2022) demonstrated that classical 

calibration (e.g. Tellinghuisen 2000) can effectively mitigate the effects of regression towards 

the mean. However, none of these studies have quantified the long-term impact of such errors 

on decisions or plans based on data affected by regression towards the mean. 

Numerous studies have examined the effects of uncertain data more generally. Typically, these 

studies simulate erroneous data and compare forecasts based on that data with those based on 

data considered to be true  (e.g., Holopainen et al. 2010, Islam et al. 2010, Duvemo et al. 2014, 

Ruotsalainen et al. 2021). Some of these studies address errors in RS-based resource maps, but 

the errors are often simulated, and the study areas are relatively small. Given the growing use 

of forest resource maps in forest scenario analysis and planning, further research is needed to 

understand how uncertainties, such as Berkson-type errors, affect forecasts and decision-

making (Fassnacht et al. 2023). This need is underscored by recent policy developments in the 

European Union, where suggestions for new regulations on forest monitoring and planning 

emphasise increased use of RS (Bontemps et al. 2022). 

This study aims to assess the impact of using RS data in long-term forest planning and to 

quantify the discrepancies between expected and realised provisioning of ecosystem services 

and biodiversity. We analysed data from airborne laser scanning (ALS) and optical satellite 

imagery, both subject to random errors and regression toward the mean in varying degrees. We 

evaluated their use as inputs in forest planning models, describing a business-as-usual scenario 

extended with targets for biodiversity conservation and carbon sequestration. The models were 

implemented and solved with the decision support system Heureka PlanWise (Lämås et al. 

2023). 
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MATERIAL AND METHODS 

 

Data and pre-processing 

The RS-based predictions evaluated in this study were gathered from two forest resource maps: 

the SLU Forest Map, derived from optical satellite imagery in 2010, and a similar map obtained 

from ALS in 2019. 

Satellite predictions 

The SLU Forest Map provides predictions for volume, Lorey’s mean height, mean age, and 

species proportion, presented on 25x25 m raster elements covering all of Sweden. These 

predictions were modelled using optical satellite imagery from Landsat 7 Enhanced Thematic 

Mapper and k-nearest-neighbour imputation based on national forest inventory plots (for 

details, refer to Reese et al. 2003).  

ALS predictions 

The ALS-based map from 2019 has a resolution of 12.5x12.5 m and includes attributes derived 

from regression models between ALS data and national forest inventory plot data. These 

attributes include volume, Lorey’s mean height, average diameter at breast height (Dbh), and 

stand basal area (for details, see Nilsson et al. 2017). Raster elements with a predicted tree 

height of <3 m are excluded from the public version of the ALS map due to concerns about the 

quality of the predictions, while the full data product was retained for our analyses.  

Field-surveyed reference data 

To evaluate RS-based maps, we utilised high-quality reference data gathered for long-term 

forest planning. The reference data originated from two independent inventories conducted in 

2010 and 2019 on a forest holding encompassing approximately one million hectares of 

productive forestland in Sweden. These inventories involved systematic surveys of circular 

field plots (radius: 3-10 m), wherein individual tree data and stand properties were recorded to 

provide unbiased stand-level estimations. 

Measurement protocols varied according to the average tree height on the plots. For plots with 

established trees (average height >4 m), all trees >4 cm in diameter at breast height (1.3 m 

above ground) were calipered, and tree species were identified. A subset of calipered trees was 

randomly selected for height and age measurements, with age determined through the count of 

annual rings on increment cores. Dominant trees required for site index estimation were also 
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measured for height. On plots dominated by saplings, height measurements of main stems 

replaced calipering. Each plot underwent detailed site characterisation, including descriptions 

of vegetation, climate, soil, terrain, and natural values. 

The number of plots per stand ranged from approximately 6 in smaller stands to 13 in larger 

ones, with plot radius standardised within each stand. Stands were randomly selected through 

stratified sampling, with inclusion probabilities proportional to stand area. Stratification was 

based on auxiliary data on stand age and standing volume from the forest owner’s stand 

inventory, with at least three stands sampled per stratum. Representative stand areas were 

calculated as the total stratum area divided by the number of sampled stands. 

The inventory design followed established protocols used for the decision support system 

Heureka PlanWise, a widely used tool among forest companies and researchers in Sweden (for 

details, refer to Lindgren 1984, Jonsson et al. 1993,  Lämås et al. 2023). All attributes needed 

Figure 1. The positions of the included stands shown with coloured points. Satellite indicates those 
stands surveyed in 2010 used with the satellite map. ALS indicates those stands surveyed in 2019 
used with the ALS map. ALS is airborne laser scanning. Projection: SWEREF 99 TM (EPSG:3006). 
Source of country borders and positions of cities: Natural Earth. 
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to run Heureka PlanWise were collected in the field inventory. Heureka PlanWise is described 

below.  

Standardisation of age distributions 

Only those field-surveyed stands covered by the footprint of the 2019 ALS map were included 

in the analyses, resulting in 198 of 1,070 stands from 2010 and 152 of 800 stands from 2019 

being included further (map of included stands in Figure 1). To ensure that the two inventories 

were comparable on the forest level, random values from a uniform distribution were drawn 

repeatedly and assigned as new representative areas for the remaining stands until the same age 

distribution was achieved. This process also maintained the total area represented in the 

original field inventories. After this adjustment, the inventories from both years matched the 

general age distribution of forest land owned by forest companies in Sweden.  

Finalised stand averages  

We calculated stand averages from the RS-based predictions for the corresponding field-

surveyed stands using the satellite map for stands surveyed in 2010 and the ALS map for those 

surveyed in 2019. This involved calculating the area-weighted average of each attribute across 

the raster elements intersecting each stand polygon.  

Heureka PlanWise can be used either with data on a single-tree level, i.e. tree lists, or data 

made from stand averages. When using the latter, Heureka PlanWise generates a tree list 

corresponding to the averages with models included in the system. The satellite map needed to 

be complemented with missing attributes in the form of stand averages to make it possible to 

generate tree lists for each stand with Heureka PlanWise. The complementation was done using 

regression models developed from freely available Swedish national forest inventory plot data 

from 2017-2021. For more details about the complementation, refer to Appendix A. 

Furthermore, to run Heureka PlanWise, more information than what was available from RS 

sources was needed, which is why the RS-based predictions for the included stands in both 

maps were complemented further with averages from the field survey of each stand. The 

sources of all attributes for these RS-based, but complemented, stand inventories are presented 

in Table 1. 
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Table 1. An overview of the attributes and their sources for the completed remote sensing-based 
stand inventory datasets. ALS refers to airborne laser scanning, while satellite refers to optical 
satellite imagery. Species proportion was calculated based on volume for the following species: 
Picea abies (L.) H. Karst., Pinus sylvestris L., Betula spp. (Betula pendula Roth or Betula 

pubescens Ehrh.), Pinus contorta Douglas ex Loudon, Fagus sylvatica L., Quercus spp. (Quercus 

robur L. or Quercus petraea (Matt.) Liebl.), and other deciduous species. Dbh refers to the mean 
basal area-weighted tree diameter at breast height. 

Attribute for stand 
Satellite ALS 

Volume (m3ha-1) only used for 

modelling 

not used 

Lorey’s mean height (m) satellite ALS 

Basal area (m2ha-1) modelled ALS 

Dbh (cm) modelled ALS 

Mean age (years) satellite field survey 

Number of stems (ha-1) modelled not used 

Species proportion (0-1) satellite field survey 

Soil moisture (categorical) field survey field survey 

Vegetation type (categorical) field survey field survey 

Site index  (m) field survey field survey 

Technical accessibility (categorical) field survey field survey 

Simulation of tree lists  

Tree lists were generated for the stands based on both RS-based stand inventories with Heureka 

PlanWise (v.2.21.3.0). This was not needed for the reference data since it was already at the 

individual tree level.  

Examination of data and errors  

New stand averages were calculated from the tree lists generated in Heureka PlanWise and 

were compared with the corresponding field-surveyed averages (Figure 2).  
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Figure 2 clearly shows that the RS-based predictions from both RS-based stand inventories 

regress to the mean since the slope of the least square lines is smaller than the 1:1 lines. This 

indicates that the small reference values are overestimated while the large reference values are 

underestimated. To further determine that the errors in the RS-based predictions resulted from 

regression to the mean and thus of Berkson-type, we calculated error correlations and examined 

the empirical variances of both the errors and the predictions. Furthermore, we performed a 

paired t-test grouped on three equally sized quantiles (defined individually per attribute) to 

check for local bias. 

Figure 2. The relation between field-measured reference data (x-axis) and complemented remote 
sensing predictions (y-axis) from remote sensing-based forest inventories with optical satellite 
imagery (blue) and ALS (red) for the attributes basal area, mean age, basal area weighted diameter 

at breast height, Lorey’s mean height, number of stems, and volume. Each point represents 
averages for one stand as calculated by Heureka PlanWise. The coloured lines are the least square 
linear relationships. The black line is the 1:1 relationship. Note that the values for basal area, 
diameter and stems per hectare in the satellite map were assigned according to the functions in 
Tables A1-A3 in the Appendix and that age in the ALS map is the same as the field-measured 
age. RRMSE refers to the relative root mean square error. 
 

http://www.forestsmonitor.com/


Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

146 www.forestsmonitor.com  

 

Descriptive statistics for the finalised stand inventories are presented in Table 2.  

Table 2. Descriptive statistics (area-weighted averages) for the completed RS-based stand 
inventories compared to the reference data. Dbh refers to the mean diameter at breast height. 

ALS stands for airborne laser scanning, and satellite refers to optical satellite imagery. Dbh refers 
to the mean basal area-weighted tree diameter at breast height. Field indicates that the source was 
the field-survey 

Year Source 
Volume 

Lorey’s 

mean 

height 

Basal 

area 
Dbh 

Mean 

age 

Number of 

stems 

Site 

productivity 

(m3ha-1) (m) (m2ha-1) (cm) (years) (ha-1) (m3ha-1year-1) 

2010 field 125.3 10.9 17.1 14.9 50.4 2,074 5.3 

2010 satellite 123.8 10.7 18.9 15.0 51.4 2,488 5.3 

2019 field 121.6 11.2 16.4 14.8 52.1 2,158 4.2 

2019 ALS 114.2 11.4 16.8 15.8 53.6 1,261 4.1 

The errors in the RS-based predictions correlated more with the corresponding reference data 

than with the predictions (Table 3). This relationship was true for all variables except the 

predicted number of stems in the satellite map. Moreover, the empirical variances of the 

predicted values were smaller than those of the reference data for all variables except the 

number of stems in the predictions based on satellite data (Table 4). Furthermore, the biases 

were generally positive for small reference values and negative for large reference values 

(Table 5). These results imply that the errors of the predictions in the study were generally of 

Berkson type and that the models had a regression towards the mean.  

Table 3. The correlation between errors and their corresponding field-measured values in stands 
and the correlation between errors and their corresponding stand predictions for both the 

satellite and ALS maps. Dbh is the mean basal area weighted diameter at breast height. ALS is 

airborne laser scanning. Satellite is optical satellite imagery. Dbh refers to the mean basal area-
weighted tree diameter at breast height. 

 Satellite ALS 

Attribute Errors~Field Errors~Prediction Errors~Field Errors~Prediction 

Volume 0.79 0.10 0.50 0.11 

Lorey’s mean height 0.66 0.01 0.71 0.47 

Basal area 0.74 0.02 0.53 0.08 

Dbh 0.49 -0.31 0.45 -0.02 

Mean age 0.78 -0.07 0.30 0.23 

Number of stems 0.59 -0.64 0.98 0.28 
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Table 4. The empirical variance of RS-based predictions and the field-measured values for both 
the satellite and ALS map. Dbh is the mean basal area weighted diameter at breast height. ALS is 
airborne laser scanning. Satellite is optical satellite imagery. Dbh refers to the mean basal area-
weighted tree diameter at breast height. 

 Satellite ALS 

 Field Prediction Field Prediction 

Volume (m3ha-1) 9,847 3,807 8,219 6,209 

Lorey’s mean height  (m) 23 13 25 16 

Basal area (m2ha-1) 98 45 83 60 

Dbh (cm) 42 35 48 38 

Mean age (years) 902 354 752 725 

Number of stems (ha-1) 1,425,087 1,569,503 3,785,745 179,955 
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Table 5. Results from a paired t-test for both RS-methods. The data for each attribute was divided 
into three equally sized parts defined by the 1/3 and 2/3 percentiles. A positive bias indicates that 
the RS-metod overestimated the reference value, and vice versa. A large p-value indicates that 
the difference is non-significant, i.e. that there is no bias. Dbh refers to the mean diameter at breast 

height.  ALS stands for airborne laser scanning, and satellite refers to optical satellite imagery. 

Method Attribute 

Part 

of 

range 

Bias p-value Number of stands 

ALS Age 1/3 +0.79 0.09 50 

ALS Age 2/3 0.00  49 

ALS Age 3/3 0.00  50 

ALS Basal area 1/3 +2.13 0.00 50 

ALS Basal area 2/3 -0.28 0.54 49 

ALS Basal area 3/3 -2.94 0.00 50 

ALS Dbh 1/3 +1.09 0.01 50 

ALS Dbh 2/3 +0.69 0.09 49 

ALS Dbh 3/3 -1.42 0.01 50 

ALS Height 1/3 +0.58 0.02 50 

ALS Height 2/3 -0.22 0.14 49 

ALS Height 3/3 -1.58 0.00 50 

ALS Stems 1/3 +51.53 0.03 50 

ALS Stems 2/3 -170.54 0.00 49 

ALS Stems 3/3 -1723.66 0.00 50 

ALS Volume 1/3 +7.22 0.00 50 

ALS Volume 2/3 -10.57 0.00 49 

ALS Volume 3/3 -33.26 0.00 50 

Satellite Age 1/3 +17.65 0.00 65 

Satellite Age 2/3 +8.64 0.00 65 

Satellite Age 3/3 -24.86 0.00 65 

Satellite Basal area 1/3 +7.45 0.00 65 

Satellite Basal area 2/3 +1.48 0.01 65 

Satellite Basal area 3/3 -5.82 0.00 65 

Satellite Dbh 1/3 +2.55 0.00 66 

Satellite Dbh 2/3 +0.93 0.06 64 

Satellite Dbh 3/3 -2.55 0.00 65 

Satellite Height 1/3 +1.68 0.00 65 

Satellite Height 2/3 -0.35 0.08 65 

Satellite Height 3/3 -3.30 0.00 65 

Satellite Stems 1/3 +388.16 0.00 65 

Satellite Stems 2/3 +91.06 0.55 65 

Satellite Stems 3/3 -496.27 0.05 65 

Satellite Volume 1/3 +49.36 0.00 65 

Satellite Volume 2/3 -1.51 0.77 65 

Satellite Volume 3/3 -76.74 0.00 65 
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SIMULATING FOREST DEVELOPMENT AND MANAGEMENT ACTIVITIES 

USING HEUREKA PLANWISE 

 

To assess the impact of relying on RS-based stand inventories for forest management planning, 

we generated long-term plans based on the forest stand inventories described above.  

Heureka PlanWise 

Heureka PlanWise is built around a simulator that generates treatment programmes at the stand 

level according to user-defined rules and an optimisation module that selects the optimal 

combination of treatment programmes for each stand based on user-stated preferences (Lämås 

et al. 2023). Thus, Heureka PlanWise is based on the model I formulation, where a treatment 

programme is an explicit sequence of forest management activities and non-management in 

one stand during the planning horizon (Johnson and Scheurman 1977). The simulator forecasts 

the tree layer based on current forest data and possible management activities (Fahlvik et al. 

2014). It includes models for various ecosystem services, such as harvested wood output (e.g. 

Flisberg et al. 2014), carbon storage (e.g. Lundmark et al. 2018), and biodiversity indicators 

(e.g., Eggers et al. 2022). The treatment programmes are divided into five-year periods. The 

user defines management strategies and rules to generate multiple alternative treatment 

programmes per stand, allowing the simulator to vary the timing and type of management 

activities. 

Management strategies  

For both RS-based stand inventories, we generated treatment programmes under seven 

management strategies: typical Nordic even-aged forestry, intensive forestry, selection 

forestry, actively promoted broad-leaves forestry, passively promoted broad-leaves forestry, 

closer-to-nature forestry, and unmanaged forestry (see Table 6). Each strategy, except for 

selection forestry and unmanaged forestry, also included a variant with extended rotation 

lengths of 50 years. The strategies were defined to reflect business-as-usual forest management 

in the Nordics as well as potential alternatives. The alternatives were defined with aims other 

than the highest financial return in mind.  
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Table 6. An overview of the management strategies used in the study. 

Strategy Min. 

rotation 

length 

Max. 

rotation 

length 

Retention Regeneration 

method 

Stand proportions 

after cleanings and 

thinnings 

Typical 

Nordic 

even-aged 

forestry 

Lowest 

legal age 

Lowest 

legal age + 

10 years 

According to 

certifications, i.e. 

10 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,500 

conifer seedlings ha-1 

90% of regeneration 

species and 

10% of broad-leaves 

Intensive 

forestry 

Lowest 

legal age 

Lowest 

legal age 

According to 

certifications, i.e. 

10 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,500 

genetically improved 

conifer seedlings ha-1. 

Pinus contorta on 

poorer sites 

95% of regeneration 

species and 

5% of other species 

Selection 

forestry  

Not 

applicable 

Not 

applicable 

Not applicable Advance growth Not applicable 

Active 

promotion 

of broad-

leaves 

Conifer 

stands: 

lowest 

legal age 

Broad-leaf 

stands: 80 

years 

Conifer 

stands: 

lowest 

legal age + 

10 years. 

Broad-leaf 

stands: 90 

years  

20 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,000 

seedlings ha-1. 

Populus tremula on 

rich sites, otherwise 

Betula pubescens. 

100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of regeneration 

species  

Passive 

promotion 

of broad-

leaves 

Conifer 

stands: 

lowest 

legal age 

Broad-leaf 

stands: 80 

years 

Conifer 

stands: 

lowest 

legal age + 

10 years. 

Broad-leaf 

stands: 90 

years  

20 trees and 3 

high stumps ha-1 

att final felling 

Seed trees for Pinus 

sylvestris stands on 

drier and poorer sites, 

otherwise planting of 

approximately 2,500 

conifer seedlings ha- 1 

100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of regeneration 

species 

Closer-to-

nature 

forestry 

Lowest 

legal age + 

25 years 

Lowest 

legal age + 

50 years 

70 trees and 3 

high stumps ha-1 

at final felling 

and 3 high 

stumps ha-1 at 

thinning 

Seed trees 100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of planted 

species 

Unmanaged Not 

applicable 

Not 

applicable 

Not applicable Not applicable Not applicable 

For typical even-aged forestry, we simulated the standard practices for certified Nordic 

forestry. This strategy involved mechanical soil preparation two years post-final felling, 

planting of conifer seedlings in the subsequent year, cleaning at 2-6 meters tree height, up to 

two thinnings, and a final felling. The intensive forestry strategy mirrored the even-aged 
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approach but also incorporated fertilisation and the planting of exotic tree species in appropriate 

stands. Selection forestry involved repeated selection fellings every 20 years. In the active 

promotion of broad-leaves, planting was exclusively done with Betula pubescens or Populus 

tremula (L.), with broad-leaves prioritised as future-trees during cleanings and thinnings. The 

passive promotion of broad-leaves included conifer planting, yet broad-leaves were prioritised 

as future-trees in subsequent cleanings and thinnings. Closer-to-nature forestry utilised only 

seed trees for regeneration, emphasised the leaving of broad-leaves in cleanings and thinnings, 

and maintained higher retention of trees post-treatment compared to other strategies. In 

unmanaged forestry, the forest was left without intervention. For all strategies, excluding 

unmanaged forestry, 10% of each stand’s area was designated as retention patches, not 

including retention of standing trees and high stumps. 

 

MAKING PLANS WITH THE HELP OF OPTIMISATION 

 

To identify the optimal treatment programmes for each stand, independently for each RS-based 

inventory, we formulated and solved two distinct optimisation problems that reflect varying 

decision-maker priorities. 

Optimisation models 

The HARVEST optimisation problem was designed for a decision-maker focused on 

maximising economic returns and ensuring stable or increasing harvest levels. This problem 

seeks the plan that delivers the highest net present value (NPV) while adhering to certification 

standards and legal requirements and maintaining or increasing harvest levels over time (see 

Equations 1-10). In contrast, the BIO-CARBON problem was tailored for a decision-maker 

with similar economic and regulatory objectives as HARVEST but with additional constraints 

of preserving carbon storage in living tree biomass and maintaining the area of ecologically 

significant forests (see Equations 1-14). Ecologically significant forests were defined based on 

indicators established by the Swedish Parliament’s environmental objectives (The Swedish 

Environmental Protection Agency 2024). The NPVs in both cases were calculated using a 3% 

discount rate. 
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The detailed formulation of the optimisation problems is provided in the form of a mixed 

integer programming model presented in the subsequent equations. 

(1) 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒  𝑍 =  ∑ ∑ 𝑛𝑖𝑗𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 

Subject to 

(2) 𝑥𝑖𝑗 ∈ [0,1] ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽𝑖 

(3) 𝑦𝑠𝑝 ∈ {0,1} ∀ 𝑝 ∈ 𝑃, ∀ 𝑠 ∈ 𝑆 

(4) ∑ 𝑥𝑖𝑗

𝐽𝑖

𝑗=1
= 1 ∀ 𝑖 ∈ 𝐼 

(5) ∑ 𝑦𝑠𝑝 

𝑆 

𝑠=1
= 1 ∀ 𝑝 ∈ 𝑃 

(6) ∑ ∑ 𝑏𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤  0.5 ∑ 𝑎𝑖

𝐼

𝑖=1
 ∀ 𝑝 ∈ 𝑃 

(7) ∑ ∑ 𝑑𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤ 5𝑒 ∑ 𝑓𝑠𝑦𝑠𝑝 ∑ 𝑎𝑖  

𝐼

𝑖=

𝑆 

𝑠=1
 ∀ 𝑝 ∈ 𝑃 

(8) 𝑦𝑠𝑝𝑔𝑠 ≤
∑ ∑ ℎ𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖
𝑗=1

𝐼
𝑖=1

∑ 𝑎𝑖  
𝐼
𝑖=1

 ∀ 𝑝 ∈ 𝑃, ∀ 𝑠 ∈ 𝑆 

(9) ∑ ∑ 𝑘𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤  2.5𝑒 ∑ 𝑓𝑠𝑦𝑠𝑝 ∑ 𝑎𝑖  

𝐼

𝑖=

𝑆 

𝑠=1
 ∀ 𝑝 ∈ 𝑃 

(10) ∑ ∑ 𝑣𝑖𝑗𝑝+1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥ ∑ ∑ 𝑣𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(11) ∑ ∑ 𝑐𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑐𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(12) ∑ ∑ 𝑙𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑙𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(13) ∑ ∑ 𝑚𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑚𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(14) ∑ ∑ 𝑜𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑜𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

Where, 

𝑍 is the objective function given the set of restrictions, 

𝑥𝑖𝑗 is the proportion of stand 𝑖 assigned to the treatment programme 𝑗,  

𝑦𝑠𝑝 is a binary variable that helps in the calculation of the allowable annual harvest area decided by 

Swedish law, 

𝐼 is the set of stands, 

𝐽𝑖 is the set of treatment programmes for stand 𝑖, 

𝑃 is the set of periods, 

𝑆 is the set of area classes defined by Swedish law regarding allowable annual harvest area, 

𝑛𝑖𝑗  is the NPV per hectare from forest management in stand 𝑖 according to treatment programme 𝑗, 

𝑎𝑖 is the representative area of stand 𝑖, 

𝑏𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the age of the stand is lower than 20 

years, otherwise 0, 

𝑑𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 if the stand is subjected to clear cut in period 𝑝, 

otherwise 0, 
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𝑒 is an area factor from Swedish law, taking the value 0.014 if the average site productivity of the 

forest holding is larger than 8 m3ha-1year-1, 0.011 if it is between 8 and 4 m3ha-1year-1, otherwise 

0.009, 

𝑓𝑠 is a correction factor from Swedish law taking the value 1.4 for 𝑠 = 1, 1.8 for 𝑠 = 2, 2.2 for 𝑠 = 3, 

2.8 for 𝑠 = 4, 

𝑔𝑠 is an area class proportion from Swedish law taking the value 0 for 𝑠 = 1, 0.26 for 𝑠 = 2, 0.51 for 

𝑠 = 3, 0.76 for 𝑠 = 4, 

ℎ𝑖𝑗𝑝 takes the value 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the mean age of the stand 

is older than a rotation age, otherwise 0. The rotation age is 70 years if the average site productivity of 

the forest holding is larger than 8 m3ha-1year-1, 90 years if it is between 8 and 4 m3ha-1year-1, otherwise 

110 years, 

𝑘𝑖𝑗𝑝 takes the value 1 for s stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand is subjected to 

fertilisation, otherwise 0, 

𝑣𝑖𝑗𝑝 is the harvested volume per hectare in stand 𝑖 with treatment programme 𝑗 in period 𝑝, 

𝑐𝑖𝑗𝑝  is the carbon stock of living trees per hectare in stand 𝑖 with treatment programme 𝑗 in period 𝑝, 

𝑙𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand is older than 120 years in 

boreal-nemoral and nemoral forests or 140 years in boreal forests, otherwise 0, 

𝑚𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if at least 25% of the basal area is broad-

leaf and the stand is older than 60 years in boreal-nemoral and nemoral forests or 80 years in boreal 

forests, otherwise 0, and 

𝑜𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand has more than 60 large trees 

per hectare, otherwise 0. A conifer is considered large if the Dbh is wider than 45 cm; the 

corresponding value for broad-leaves is 35 cm. 

Equation (1) defines the objective of maximising the NPV across all stands in the forest. Eq. 

(2) states that 𝑥𝑖𝑗 is a continuous variable between 0 and 1, while Eq. (3) states that 𝑦𝑠𝑝 is a 

binary variable. Eq. (4) sets the maximum area constraint, ensuring that the proportions of 

assigned treatment programmes in each stand sum to 1. Eq. (5), together with Eq. (3), ensures 

that only one area class is used by forcing the sum of 𝑦𝑠𝑝 to be equal to 1 in each period. In line 

with Swedish law, Eq. (6) ensures that the area of forests younger than 20 years remains below 

50% of the total area in all periods. Eq. (7) limits the harvested area so that it does not exceed 

the allowable harvest area, which is calculated using Eq. (8). Notably, the factor 5 adjusts the 

annual value to a periodic one. Eq. (9) restricts the area subject to fertilisation to less than half 

of the allowable harvest area. Eq. (10) enforces a non-declining harvest, while Eq. (11) 

mandates non-declining carbon storage in living tree biomass. Eq. (12) preserves a non-

declining area of old-growth forests, Eq. (13) maintains the area of mature forests rich in broad-

leaf trees, and Eq. (14) ensures a non-declining area of forest with large trees. Note that Eqs. 

(11 - 14) are specific to the BIO-CARBON optimisation problem. 
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Outcomes from the optimisation  

The two optimisation problems were solved independently using treatment programmes 

generated from each RS-based forest inventory to produce management plans. The 

optimsiation module in Heureka PlanWise was used to build the problem in Zimpl. The 

problem was then passed on to Gurobi 10 for solving, employing a traditional branch and bound 

algorithm with a relative gap tolerance of 1% (Land & Doig 1960). 

The outcomes, measured in terms of NPV, harvest volumes, carbon storage, and the area of 

ecologically significant forests, represent what decision-makers might expect when following 

these plans, assuming the RS-based predictions are accurate. These expected outcomes are 

referred to as EXPECTATION. 

To evaluate what would happen in real forests if decisions on future management were made 

using RS-based stand inventories, we simulated the implementation of these management 

decisions using field-surveyed reference data as input. Heureka PlanWise forecasted the 

outcomes for stand development, as well as indicators of ecosystem services and biodiversity, 

following the same sequences of management determined from using the corresponding RS-

based stand inventories of matching stands. The resulting outcomes are referred to as 

REALISATION. 

As a reference, we also solved the two optimisation problems using treatment programmes 

generated solely from the field data as input. The outcomes for the resulting plans are denoted 

REFERENCE, as they represent the optimal plans assuming perfect information.  

To aid in digesting the results, we highlight two key comparisons. The first is the difference 

between REALISATION and EXPECTATION; a negative difference in this comparison 

indicates that the actual outcomes fell short of the expected ones, signalling an over-optimistic 

expectation. The second important comparison is between REALISATION and REFERENCE; 

a negative difference here suggests suboptimality, revealing that decisions based on RS data 

were less optimal than those derived from field data. This kind of suboptimality is often denoted 

regret (Bell 1982; Kangas et al. 2015). In the same tradition, an overestimation of the optimal 

value, i.e. EXPECTATION vs. REFERENCE, can be denoted disappointment (Bell 1985).   
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RESULTS 

 

Net present value 

Our findings indicate a potential risk of overestimating NPV when relying on RS-based stand 

inventories (Table 7). The discrepancy between the expected and realised NPV was more 

pronounced for satellite-based plans than ALS-based plans. A similar trend was observed for 

suboptimality, i.e. the difference between the realised and reference NPV.  

Table 7. The results for the net present value for both remote sensing-based stand inventories 
and each problem. Loss is the difference between the expected and the realised net present value. 
Suboptimality is the difference between the reference and realised net present value. Satellite 
refers to optical satellite imagery, and ALS to airborne laser scanning. 

Data used Problem REALISATION EXPECTATION REFERENCE Loss Suboptimality 

  SEK ha-1 SEK ha-1 SEK ha-1   

Satellite HARVEST 51,469 56,345 56,626 -8.7% -9.1% 

Satellite 
BIO-

CARBON 
51,515 56,202 55,214 -8.3% -6.7% 

ALS HARVEST 49,318 53,056 52,842 -7.0% -6.7% 

ALS 
BIO-

CARBON 
48,430 52,032 51,822 -6.9% -6.5% 

 

Harvest levels 

The RS-based plans lead to uneven harvest levels during the planning horizon in 

REALISATION (Figure 3). A common pattern emerged where the initial expected harvest 

levels were lower than those realised during the first 10–15 years but generally surpassed them 

in later years, with brief exceptions. In these cases, realised harvest levels also exceeded those 

in REFERENCE, suggesting unsustainable over-harvesting. Over the 100-year period, the total 

suboptimality in harvested volume in REALISATION relative to REFERENCE was somewhat 

larger for ALS-based plans than for satellite-based plans (Table 8). Both the satellite-based and 

ALS-based plans got lower (EXPECTATION compared to REALISATION) harvest levels by 

10-12%. EXPECTATION projected higher harvests than for both data sets, indicating an 

overestimation. 
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Table 8. The results for the average harvest level per hectare for both remote sensing-based stand 
inventories. Loss is the difference between the expected and the realised average harvest level. 
Suboptimality is the difference between the reference and realised average harvest level. Satellite 
refers to optical satellite imagery, and ALS to airborne laser scanning. 

Data used Problems REALISATION EXPECTATION REFERENCE Loss Suboptimality 

  m3ha-1year-1 m3ha-1year-1 m3ha-1year-1   

Satellite Both 4.4 5.0 4.8 -12% -8.3% 

ALS Both 3.9 4.4 4.3 -10% -8.7% 

 

  

Figure 3. The average harvested volume per hectare and year according to the three outcomes 
REFERENCE, EXCPECTATION, and REALISATION and the problems HARVEST and 
BIO-CARBON. Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Carbon stock 

Figure 4 illustrates that satellite-based plans overestimated carbon stocks in EXPECTATION 

compared to REALISATION during the first 50 years, with differences ranging from 8% to 

24%. In contrast, the ALS-based plans showed smaller deviations, from -3% to 7.5%. Despite 

the BIO-CARBON problem prohibiting any reduction in carbon stock, both ALS and satellite-

based plans resulted in a realised carbon stock reduction of approximately 5% compared to the 

initial value after several years. 

 

  

Figure 4. The average carbon stock per hectare according to the three outcomes REFERENCE, 
EXCPECTATION, and REALISATION and the problems HARVEST and BIO-CARBON. 
Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Ecologically important forests  

Figure 5 shows the development of the area proportion of forests that fulfilled any of the 

following criteria: it was older than 120 years in the south or 140 years in the north, had at least 

60 large trees per hectare or had many mature broad-leaf trees. Satellite-based plans were less 

effective in identifying these ecologically valuable forests than ALS-based plans, causing 

EXPECTATION to be significantly lower than REALISATION early in the planning horizon, 

which contributed to an unintended decline in BIO-CARBON. In contrast, the ALS-based 

plans showed more alignment between REALISATION, EXPECTATION, and REFERENCE, 

though EXPECTATION was often equal to or lower than REALISATION over many periods. 

Figures for the individual indicators are presented in Appendix B. 

  

Figure 5. The area proportion of forest where any of the ecological indicators old forest, mature 
broad-leaf forests or forests with large trees were true according to the three outcomes 
REFERENCE, EXCPECTATION, and REALISATION and the problems HARVEST and 
BIO-CARBON. Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Differences during the first 10 years  

The first 10 years in a planning horizon are often considered most important, as it is very 

common to make a new long-term plan when that time has passed (Ulvdal et al. 2023). The 

relative changes for harvest levels, carbon stock, and the area of ecologically important forests 

compared to the reference during the first 10 years for the HARVEST-problem also show large 

deviations for this initial time (Table 9). Notably, harvest levels were almost 20% lower than 

what they should have been when planning with satellite data, even though the expectation was 

higher than the reference. Carbon stocks were overestimated, most significantly for the satellite 

data. Also, the area of ecologically important forests shows significant deviations from the 

reference levels.  

Table 9. The relative changes for harvest levels, carbon stock, and the area of ecologically 
important forests compared to the reference during the first 10 years for the HARVEST-
problem. 

Method Outcome Harvest level Carbon 

Ecologically 

important 

forests 

ALS EXPECTATION +0.10% +0.52% -4.22% 

ALS REALISATION +5.92% -0.30% +3.51% 

Satellite EXPECTATION +1.05% +11.88% -99.11% 

Satellite REALISATION -18.18% -1.28% 55.72% 
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DISCUSSION 

 

Our study reveals that forest management planning based on data from RS-based forest 

inventories can lead to unexpected or undesirable outcomes. The realised results for ecosystem 

services and biodiversity indicators often diverged significantly from initial expectations. 

Notably, deviations were more pronounced in plans based on predictions from satellite data 

than those relying on predictions from ALS. This was expected since the satellite predictions 

generally had larger random errors and a more profound influence of regression toward the 

mean (Figure 2). 

Across all indicators, i.e. NPV, harvest volume, carbon stock, and ecologically important forest 

area, the realised outcomes deviated from expectations. Note that absolute values from the 

evaluation of the two RS-based stand inventories should not be directly compared across 

inventories, as they represent slightly differing forests, despite efforts to standardise them. 

Rather, the focus should be on relative differences, such as the gap between expected and 

realised outcomes. 

NPV, used as an overall measure of optimality, indicated that decision-making informed by 

RS could result in suboptimality, with reductions in NPV of at least -7% to -9%. The 

suboptimality was more pronounced in the satellite-based plans than those based on ALS 

predictions (Table 7), likely due to larger random errors and effects from regression towards 

the mean in satellite-derived predictions (Figure 2). The suboptimalities we report are likely 

conservative, as they reflect only the direct costs associated with mistimed or suboptimal 

treatments and their silvicultural consequences. For example, too early harvesting would result 

in lower timber volumes or smaller logs, both of which yield lower market prices and incur 

higher operational costs. The suboptimalities exclude indirect costs, such as those stemming 

from failures to meet industrial supply contracts. Additionally, some attributes in the RS-based 

inventories were gathered in the field, thus providing an unfair comparison to the reference 

data in favour of the RS-based inventories. However, the suboptimalities we report are 

consistent with or exceed those reported in other studies examining the impact of data quality 

on planning efficiency (e.g. Duvemo et al. 2014; Ruotsalainen et al. 2021).  

While NPV is a useful metric for overall objective fulfilment, harvest levels are often more 

critical for forest companies and national scenario analyses (Hynynen et al. 2015; Ulvdal et al. 

2023). Our findings demonstrate substantial fluctuations in realised harvest levels when 
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planning is based on RS-based stand inventories (Figure 3). These levels were generally lower 

than both optimal and expected values, which poses potential challenges (Table 8). For 

example, the financial value of forest companies may depend on their projected harvest levels 

(Chudy & Cubbage 2020). Also, lower-than-expected harvests may hinder efforts to replace 

fossil fuels with wood-based materials, a key strategy for mitigating climate change (e.g. 

Gustavsson et al. 2017).  

The sudden decrease in harvest levels after the first period for the satellite-based plans can be 

explained by the fact that some stands with harvests planned according to the predictions from 

satellite data had not reached the lowest allowable age for harvests according to the reference 

data (see Figure 6). These harvests were postponed to the earliest time points when they were 

allowed, resulting in lower harvests. This result is most likely an effect of regression towards 

the mean since relatively young forests, i.e. approximately 50 years, according to the reference 

data, were predicted to be older, i.e. approx. 75 years (Figure 6). This effect from regression 

towards the mean also led to cyclic patterns in harvest levels, which is an expected result of 

planning based on data with reduced variability of initial conditions, i.e. data that describe a 

too large portion of the forest as conforming to average conditions. 

 

Figure 6. The stand ages according to both the reference data and predictions from satellite data, 
at year 0 in stands with planned harvests in the second period (year 5-10) of the problem 
HARVEST where decisions were based on the satellite-based predictions. The planned harvests 
are coloured depending on if the harvest in each stand was legal or not (depending on the age). 
The green-blue stands had not come to age and were therefore postponed. None indicates that 
no harvest were planned in either case in that period.  
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Keeping forests from becoming carbon sources is also a possible climate change mitigation 

strategy (Kirschbaum 2003), where short-term reduction is the key (Skytt et al. 2021). Our 

results indicate that forest management decisions informed by RS-based stand inventories may 

lead to reductions in carbon stocks despite intentions to increase them (Figure 4). Furthermore, 

the satellite-based plans substantially overestimated initial carbon storage levels, which raises 

concerns for carbon monitoring programs that rely on predictions based on satellite data. 

Planning for ecological considerations with RS-based stand inventories as input also presents 

challenges. Satellite-based plans tended to underestimate the area of ecologically important 

forests (Figure 5), likely due to old forests missing from the dataset, which is explained by 

regression towards the mean. A correct assessment of old forests appeared to be very influential 

for the overall results for all three ecological indicators (see individual indicators in Appendix 

B).  

In contrast, ALS-based plans yielded more accurate results, as forest age in this dataset was not 

predicted using RS (Table 1). Although methods for predicting forest age using a combination 

of ALS and satellite data exist, they remain uncertain, with relative root mean squared errors 

ranging from 16% to 50% (Schumacher et al. 2020). Nonetheless, advances in bi-temporal 

ALS suggest that it may become possible to improve age predictions in the future (Appiah 

Mensah et al. 2023). Including predicted ages instead of using the field-measured ages would 

probably negatively influence the results of the ALS-based plans. 

Given the growing reliance on remotely sensed forest inventories (Fassnacht et al. 2023), we 

concur with calls for increased evaluation of these datasets. A persistent issue is the frequent 

presentation of forest resource maps without accompanying quality metrics, which may lead 

forestry professionals and policymakers to overlook the inherent uncertainties (Kangas et al. 

2023). The need for such evaluations is underscored by the increasing emphasis on large-scale 

RS-based forest monitoring programs for policy development (Probeck et al. 2014; Linser et 

al. 2023). A recent European example illustrates the risks of basing policy on RS-derived data. 

Ceccherini et al. (2020) claimed that, from analysing satellite data, there was a rapid increase 

in harvested areas across Europe, particularly in the Nordic region. However, these findings 

were later contested both methodologically and with additional analyses of national field-based 

forest inventories (Palahí et al. 2021; Picard et al. 2021; Breidenbach et al. 2022). The 

questioned conclusions by Ceccherini et al. (2020) are not strictly related to random errors or 
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biases in RS predictions but point to the uncertainties that may arise when RS-derived data are 

used to inform policy (European Commission 2024). 

Our findings highlight potential risks when using RS data for forest scenario analysis and 

planning, particularly due to differences between expected and realised outcomes. There is, 

however, more to do in this field. For example, this study only acknowledged three indicators 

for ecologically important forests due to the lack of other models – which is a common problem 

(Hunault-Fontbonne & Eyvindson 2023). Another drawback was that we only included carbon 

stock in living trees when soil carbon, in reality, makes up a significant part of the total stock 

(Bradshaw & Warkentin 2015). The decision not to model soil carbon was based on the current 

uncertainties of the models implemented in Heureka PlanWise (Ortiz et al. 2013). Moreover, 

although the field survey data used for reference was of as high quality as practically possible, 

it may have included measurement and sampling errors (Lindgren 2000), contributing to some 

extent to the differences between field data and predictions based on remotely sensed data. The 

same is true regarding the generation of tree lists in Heureka PlanWise. These potential 

differences should, however, be rather negligible and should not impact the results in any 

significant way.  

Future studies should consider the adaptive nature of forest planning, which incorporates 

periodic re-planning and data updates since this is how forestry operates (Ulvdal et al. 2023). 

Moreover, the lack of uncertainty-handling methods in our optimisation models reflects current 

practice, as forest companies in Sweden typically do not employ such techniques (de Pellegrin 

Llorente et al. 2023). Employing stochastic programming or similar methods could likely 

improve planning outcomes (Pasalodos-Tato et al. 2013). Likewise, this would also probably 

be the case for calibration techniques such as histogram matching (Gilichinsky et al. 2012).  

Moreover, future studies should try to isolate the effect of regression towards the mean, as this 

is probably one major driver in some of the negative effects of using RS-derived data in forest 

planning. To do this, it is probably necessary to conduct some simulation of errors, where their 

characteristics could be controlled. Such a study would probably be challenging to design with 

similar real-world data as in this study. Regression towards the mean is no new problem in 

forest inventory and planning. Many inventory methods, especially those that, to some extent, 

are subjective, are affected in the same way (Ståhl 1992). Also, models that aim to describe 

forest growth and development over time are generally affected by the same problem. 

Nevertheless, the availability and periodicity of new RS-based predictions about forests, i.e. 
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forest resource maps, is drastically increasing, and many users probably do not reflect much 

about their uncertainty. This highlights the need to address the issue at hand. 

 

CONCLUSIONS 

 

Reliable data on forest resources is essential for informing future forest policy and 

management. Our findings indicate a suboptimality in NPV of -7% to -9% when using RS-

based stand inventories influenced by regression towards the mean and other errors. Other 

indicators also showed substantial differences between expected and realised outcomes in plans 

based on predictions from RS. Harvest levels fluctuated significantly over time, occasionally 

exceeding sustainable harvest thresholds, while carbon stocks were unintentionally reduced. 

Notably, satellite-based plans significantly overestimated carbon stocks, while the degree of 

overestimation was less pronounced in plans based on ALS predictions. Achieving stable 

outcomes for biodiversity indicators proved challenging for all RS-based stand inventories, 

though ALS-based plans performed markedly better than the satellite-based plans. 

Our results highlight the impact of uncertainties inherent in RS predictions, including the issue 

of regression towards the mean when such data is used in scenario analyses and planning 

models. These findings have important implications for ongoing policy development and 

potential regulations concerning large-scale forest monitoring and planning. While RS-based 

predictions remain a valuable tool for forest planning and policy, it is crucial to acknowledge 

their limitations. We recommend that decisions regarding forest management be supported by 

high-quality data or, at the very least, data with well-characterised uncertainties. 

 

AVAILABILITY OF DATA AND MATERIAL 

 

The original stand inventory and field survey data analysed during this study are unavailable 

since the data belongs to a third party (Holmen Skog AB) and may have financial implications.  

The satellite map is freely available from the Swedish University of Agricultural Sciences’ 

webpage: https://www.slu.se/en/environment/statistics-and-environmental-data/search-for-

open-environmental-data/slu-forest-map/. 
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The public version of the ALS map is freely available from the Swedish Forest Agency’s 

webpage: https://www.skogsstyrelsen.se/skogligagrunddata. The version used in this study is 

available for researchers upon reasonable request. 

 

CODE AVAILABILITY 

 

Data processing scripts in R and the Heureka PlanWise Project file are available from the 

corresponding author upon reasonable request.  
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APPENDIX A 

 

The satellite map needed to be complemented with missing attributes in the form of stand 

averages to make it possible to generate tree lists for each stand with Heureka PlanWise. The 

complementation was done by employing simple regression models developed from freely 

available Swedish national forest inventory plot data from 2017-2021 (Tables A1-A3). The 

predictive variables in the models were selected by conducting bidirectional step-wise 

regression analyses for each response variable. Logarithmic, quadratic, cubic, square root, 

raising to the power 10, raising to the power-e or reciprocal transformations of the predictive 

variables were allowed if all variables for the same response had the same transformation. Only 

stand averages from available predictions were used as input in the models to calculate the 

complementary attributes. The number of stems was only calculated for stands with height <7 

m since stands of this height need that attribute in Heureka PlanWise, but others do not.  

Table A1. The linear models (𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑧 + 𝑑𝑞) for assigning the number of stems per 

hectare in stands with heights <7 m based on the satellite map. Separate models based on 

dominant tree species group. 𝑦 is the number of stems per hectare (ha
-1
), 𝑎 is a constant, 𝑥 is the 

height (m), 𝑧 is the volume (m
3
ha

-1
), and 𝑞 is the stand age (years). * indicates significance at the 

0.001 level. The dominant species group is the species group encompassing more than 50 % of 
the total stand volume. 

Dominant species 

group  

in element 

a b c d R
2
 

Number of 

observations 

Coniferous (>50%) 5059.7* -713.7* 52.1* -0.85 0.45 3746 

Deciduous (>50%) 5181.8* -528.1* 83.4* -22.00* 0.49 1776 

 

Table A2. The power models (𝑦 = 𝑒𝑎𝑥𝑏𝑧𝑐) for assigning basal area weighted diameter at breast 
height (Dbh) in stands with heights >7 m based on the satellite map. Separate models based on 

dominant tree species group. 𝑦 is the Dbh (cm), 𝑥 is the height (m), and 𝑧 is the mean age (years). 

All exponents had significance at the 0.001 level. The dominant species group is the species 
group encompassing more than 50 % of the total stand volume. 

Dominant species group  

in element 
a b c R

2
 Number of observations 

Coniferous (>50%) 0.0836 0.807 0.179 0.76 16662 

Deciduous (>50%) -0.354 0.916 0.220 0.70 2953 
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Table A3. The linear models (𝑦 = 𝑎 + 𝑏𝑥) for assigning the basal area per hectare in stands with 
heights >7 m from the satellite map. Separate models based on dominant tree species or species 

group. 𝑦 is the basal area (m
2
ha

-1
), 𝑎 is a constant, and 𝑥 is the quota volume/height (m

2
ha

-1
). An 

asterisk (*) indicates significance at the 0.001 level. Dominant species is the species with more 
than 60% of the volume. If no species makes up more than 60%, the same rule is applied to 
species groups, i.e. coniferous and deciduous species. If no group is larger than 60%, the stand 
is considered to be mixed. 

Dominant species in element a b R2 Number of observations 

Pinus sylvestris (>60%) -0.795* 2.17* 0.98 8011 

Picea abies (>60%) -0.350* 2.13* 0.97 5029 

Betula spp. (>60%) -0.139 2.23* 0.96 1192 

Pinus contorta (>60%) -0.456* 1.95* 1.00 287 

Quercus spp. (>60%) -0.334* 2.31* 1.00 163 

Fagus sylvatica (>60%) -0.894* 2.45* 1.00 71 

Coniferous (>60%) -0.853* 2.17* 0.98 2061 

Deciduous (>60%) 0.00811 2.26* 0.97 360 

Unknown deciduous (>60%) 0.0778 2.25* 0.96 380 

Mixed (i.e. none of the above) -0.481* 2.19* 0.98 1162 
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APPENDIX B 

Figures showing the development of the individual ecological indicators in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure B1. The area proportion of forests with more than 60 large trees per hectare according to 
the three outcomes (REFERENCE, EXCPECTATION, and REALISATION) and the two 

problems (HARVEST and BIO-CARBON). Satellite refers to optical satellite imagery, and ALS 
to airborne laser scanning. 

Figure B2. The area proportion of old forests according to the three outcomes (REFERENCE, 
EXCPECTATION, and REALISATION) and the two problems (HARVEST and BIO-
CARBON). Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Figure B3. The area proportion of mature broad-leaf forests according to the three outcomes 
(REFERENCE, EXCPECTATION, and REALISATION) and the two problems (HARVEST 
and BIO-CARBON). Satellite refers to optical satellite imagery, and ALS to airborne laser 
scanning. 
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