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Abstract: 
 
A recent trend is to estimate landscape metrics using sample data and cost-

efficiency is one important reason for this development. In this study, line 

intersect sampling (LIS) was used as an alternative to wall-to-wall mapping for 

estimating Shannon’s diversity index and edge length and density. Monte Carlo 

simulation was applied to study the statistical performance of the estimators. All 

combinations of two sampling designs (random and systematic distribution of 

transects), four sample sizes, five transect configurations (straight line, L, Y, 

triangle, and quadrat), two transect orientations (fixed and random), and three 

configuration lengths were tested, each with a large number of simulations. 

Reference was 50 photos of size 1 km2, already manually delineated in vector 

format by photo interpreters using GIS environment. The performance was 

compared by root mean square error (RMSE) and bias. The best combination for 

all three metrics was found to be the systematic design and as response design the 

straight line configuration with random orientation of transects, with little 

difference between the fixed and random orientation of transects. The rate of 

decrease of RMSE for increasing sample size and line length was studied with a 
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mixed linear model. It was found that the RMSE decreased to a larger degree with 

the systematic design than the random one, especially with increasing sample size. 

Due to the nonlinearity in the definition of Shannon diversity estimator its 

estimator has a small and negative bias, decreasing with sample size and line 

length. Finally, a time study was conducted, measuring the time for registration of 

line intersections and their lengths on non-delineated aerial photos. The time study 

showed that long sampling lines were more cost-efficient than short ones for 

photo-interpretation.   

 
Keywords: landscape pattern analysis, metric, Monte Carlo simulation, bias, root 

mean square error, wall-to-wall mapping, cost-efficiency 

1. Introduction  
 
Forest inventory is one of the most important applications of areal sampling 

(Williams 2001a, 2001b, Gregoire and Valentine 2008). Traditionally, the focus 

has been on information about timber production and plot sampling has been the 

dominant sampling method for this purpose. However, nowadays it is recognized 

that forests have many other values, e.g., as habitat for flora and fauna (FAO 

2001, Corona et al. 2003) and a sampling method like line intersect sampling 

(LIS) (described in detail in § 2.2) is found to be efficient in many cases (e.g., 

Gregoire and Valentine 2008). Furthermore, with an increasing interest in non-

timber forest values, forests cannot be treated independently from other land cover 

categories since the resource value of a forest often depends on the spatial context 

(Forman and Godron 1986). The demands for forest and landscape information 

have grown immensely during the last decades (Corona et al. 2003, Köhl 2003). 

Numerous large-scale environmental monitoring programs have been established 

and forest inventory methods are applied in such programs to collect more data on 
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non-forest lands than before (NIJOS 2001, NILS 2003, Eiden et al. 2005). All this 

has resulted in a need for developing new areal sampling methods, or to adapt the 

existing methods to new situations. 

        The extension of the area of interest to all land categories has also been 

accompanied by new kinds of parameters of interest. To assess the ecological 

status of a landscape, ecologists have developed many different metrics in order to 

quantify landscape composition and configuration (McGarigal and Marks 1995, 

Gustafson 1998). Some aspects of landscape structure can be captured through 

Shannon diversity index and total edge length metrics (Kleinn C. 2000, 

Hernandez-Stefanoni 2006). The former one refers to both number of land cover 

types present and their proportions in landscape (Turner et al. 2001). The index 

value ranges between 0 and 1. A high value indicates that land cover types have 

roughly equal proportion whereas a low value shows that landscape is dominated 

by one land cover type. An edge refers to the border between two different land 

cover types. It is a robust metric and is recommended as a fragmentation index (Li 

et al. 1993, Saura and Martinez-Millan 2001). Depending on species under 

consideration the edge length in a landscape can have negative, positive and 

neutral impacts (Ries et al. 2004). There is a relationship between such landscape 

structures and ecological processes (Turner 1989) and the metrics are useful for 

understanding these relations (Leitão et al. 2006). They are increasingly used as 

indicators in monitoring programs, for comparisons on regional scale and changes 

over time (e.g., Hunsaker et al. 1994, NIJOS 2001, EPA 2003, Ji et al. 2006). 

Traditionally, complete land cover maps from remote sensing images are used for 

calculation of the metrics (e.g., Riitters et al. 1995, Herzog and Lausch 2001, 

Rocchini et al. 2006). The images are delineated into polygons of land cover types 

and the metrics are based on quantities like number of polygon, areas and edge 
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lengths and on the spatial relationships between them. FRAGSTATS (McGarigal 

and Marks 1995) is a frequently used software for calculating landscape metrics 

from such data.  

       This method for calculating metrics is not without problems. Manual 

delineation of polygons on aerial photos is time-consuming (Corona et al. 2004) 

and is also apt to give systematic errors due to omission and commission errors 

(Carfagna  and Gallego 1999). Classified maps from medium-resolution satellite 

images have low overall accuracy (Fang et al. 2006) while fine spatial resolution 

images entail huge amounts of data to be stored at high costs (Lu and Weng 

2007). With automatized delineation less time is needed than manual but it can 

lead to increased costs due to the time required for correction. Furthermore 

adjacent land cover types are easily merged into one land cover type (Wulder et 

al. 2008). Finally, it is not certain that a delineation actually made is the proper 

one for all applications. 

       Considering these problems it is worthwhile asking whether or not a sampling 

approach could be a cost-efficient alternative. Several sampling and response 

designs are available, for photo interpretation as well as for field inventory. For 

instance, plot, line, and point sampling have been applied by Hunsaker et al. 

(1994), Corona et al. (2004) and Ramezani et al. (2009). Kleinn (2000) 

demonstrated that data from field-based forest inventories could be used to 

estimate some metrics to assess temporal landscape developments. Corona et al. 

(2004) found a sample survey to be a cost-efficient alternative to complete 

mapping. Further, probabilistic sampling allows to estimate precision and 

accuracy of estimates. It is well-known that in sample surveys the accuracy of 

observations on a restricted number of distinct plots tends to be higher than in 

total enumeration since data collection is more carefully made (Freese 1962, Raj 
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1968). The sampling approach might also admit the use of data from ongoing 

surveys such as national forest inventories or to collect new data within these. 

     Line intersect sampling (LIS) has been used by several authors (e.g., Warren 

and Olsen 1964, Battles et al. 1996, Ringvall and Ståhl 1999a, Gregoire and 

Valentine 2003, Roth et al. 2003, Affleck et al. 2005) in various surveys. In some 

cases, LIS has shown to be an efficient method in field inventories and for 

remotely sensed data (e.g., Marshall et al. 2000, Esseen et al. 2006).               

      However, in general the papers referred to report specific applications of LIS 

for estimating conventional parameters like volume of coarse woody debris. The 

main objective of this paper is to study line intersect sampling for estimating 

landscape metrics. Different sampling designs and sample sizes and response 

designs as line configurations and their orientation and lengths have been tested 

on real landscape data. We assess the statistical performance of three different 

estimators of the three metrics Shannon diversity, edge length and edge density. In 

addition, the cost (time) of data collection is estimated in order to find cost-

efficient alternatives.  

 
 

2. Method and material  

The study was accomplished as a sampling experiment, with line transects laid out 

over aerial photographs which had already been photo-interpreted in vector 

format. As we focused entirely on sampling errors, the manually photo-interpreted 

polygons (and the classes assigned to them) were assumed without errors. The 

complete maps were used as reference data for the sampling experiment. All 

combinations of systematic and random designs, four sample sizes, five transect 

configurations, fixed and random orientation of transects and three transect 
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lengths were tested on two classification systems. The sampling properties of each 

combination of these sampling and response designs were estimated from a large 

number of Monte Carlo simulated samples for each delineated map. Both true and 

estimated values were calculated through a computer program, in FORTRAN, 

which was written specifically for this purpose. 

2.1. Study area  

The study was conducted in connection with the National Inventory of Landscape 

in Sweden (NILS; Allard et al. 2003), which is a major part of the national 

monitoring activities of the Swedish Environmental Protection Agency (EPA). In 

NILS, squares of 1 by 1 km are photo-interpreted. The focus of NILS is to get 

detailed land cover information and other data related to biodiversity. The digital 

photographs are in color infrared and have a ground resolution 0.4 m (scale 

1:30,000). The interpretation is conducted through stereo observation, thereby 

also gaining information on the topography of the landscape. Within each squares, 

polygons are delineated and each described with 38 variables, using the 

interpretation program Summit Evolution from DAT/EM and ArcGIS from ESRI. 

From these variables, two hierarchical classification systems were designed: 

“level one” with seven classes and “level two” with twenty classes, to make land 

cover maps (Table 1). Fifty NILS’s squares were used and true values of the 

metrics studied were obtained from the wall-to-wall mapping.  
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Table1. Land cover categories identified with the two different classification 
systems. Level 1 contains seven classes and level 2 contains twenty classes.   
Land cover class level 1 Land cover class level 2 

1- Forest  1-1- Coniferous-Dense  

 1-2- Coniferous-Sparse 

 1-3- Deciduous-Dense 

 1-4- Deciduous-Sparse 

 1-5- Mixed-Forest- Dense 

 1-6- Mixed-Forest- Sparse 

2- Urban  2-1- Housing-Areas 

 2-2- Urban-Green-Areas 

 2-3- Urban-Forest 

3- Cultivated fields  3-1- Crop-Fields 

 3-2- Graze-Fields (grass land) 

4- Wetlands 4-1- Bog 

 4-2- Fen 

 4-3- Mixed-Wetland 

5- Water  5-1- Open-Water 

 5-2- Water-Vegetation 

6- Pasture 6-1- Open- Pasture  

 6-2- Pasture-Sparse-Trees  

 6-3- Wooded-Pasture  

7- Other land 7- 1- Other land 
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2.2. Line intersect sampling (LIS)  

LIS is a sampling method where population elements are included when a transect 

line crosses them (Thompson 2002). With this method a large (or long) object has 

a higher probability to be included in the sample than a small one. LIS is a well-

known and efficient method for sampling different kinds of features (Kaiser 1983, 

DeVries 1986, Skidmore and Turner 1992). It has been used in estimating total 

length of linear features (e.g., Matérn 1964, Corona et al. 2004), for measuring the 

area of two-dimensional objects (Battles et al. 1996), and also to estimate the total 

number of objects (Gregoire and Valentine 2008). In field-based inventories, 

imaginary lines between sample plots are line transects (e.g., Dahm 2001, NILS 

2003). LIS can be implemented with different response designs as single straight 

lines transects or multiple-segmented transects such as the L-shape used in 

Canada, square transects such as in NILS (2003), or Y-shaped transects as used by 

U.S. Forest Service and the national forest inventory of Switzerland (Affleck et al. 

2005). Irrespective of sampling design LIS can be implemented with random or 

fixed configuration orientation. Fixed means that the orientation of the transects is 

defined in advance, random that the orientations of the transects are independent 

and random. Yet, in the random case, inference may still condition on the 

orientation outcomes. The performance of transect orientation (random and fixed) 

with others combinations of line transects were studied by Hazard and Pickford 

(1986) in two simulated populations.  

 

2.3. Monte Carlo sampling simulation  

Monte Carlo sampling simulation has been used by several authors to study the 

statistical performance of estimators (Hazard and Pickford 1986, Ståhl 1998, 

Kleinn and Vilcko 2006, Ramezani et al. 2009). In this study, sampling simulation 
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was used to estimate bias and RMSE of estimators of the Shannon diversity, edge 

length and edge density. Bias (or systematic error) is the difference between the 

expected value of the estimator and the true value. RMSE is the square root of the 

expected squared deviation between the estimator and the true value.  

       Sampling simulation was conducted for each combination two sampling 

designs (random and systematic), four sample sizes (16, 25, 49 and 100) and as 

response designs five line transect configurations (see Fig. 1), two transect 

orientations (fixed and random), three configuration lengths (37.5, 75 and 150 m), 

two classification systems (7 and 20 classes). The direction of the systematic 

design and the fixed transect orientation is throughout north-south, the map 

orientation. In order to obtain roughly the same level of precision of the estimates 

of bias and RMSE for different sample sizes and transect lengths the number of 

replications were between 300 and 1000 depending on the total transect length in 

a sample. (In appendices 1 and 2 data on the precision of the estimated RMSE is 

given for a selection of combinations).   

 

Figure 1. Illustration of the five different transect configurations applied in this 

study, line, L-shaped, Y-shaped, triangle and quadrat.   

 

To avoid square edge effects the external peripheral method was applied 

(Gregoire and Valentine, 2008). The center of a line configuration was allowed to 

fall within a buffer zone of minimal width outside the map. Only intersections and 

lengths within the square were included. This method allows simple versions of 
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the estimators. A drawback is that the sample size within the square is not fixed. 

 

2.4. Metrics estimators   

Metrics are defined through measurable characteristics of polygons (McGarigal 

and Marks 1995). In this study, area proportion and perimeter length of polygons 

were the basic properties for the metrics studied. The area jA  of land cover type j 

was unbiasedly estimated by  

  ∑
=

⋅
′

=
n

i
ijj l

L
AA

1

ˆ   (1)   

where ijl  is intersection length of the j th land cover type with sampling line i, L is 

the total length of all line transects, A′  is the total area including the buffer, and n 

is the sample size. The estimator was used for all five transect configurations. 

2.4.1. Shannon’s diversity index 

Shannon diversity, H  , is defined as 
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where s is the total number of land cover types considered (assumed known) and 

jp  is the area proportion of the j th land cover type. For 0=jp  , )ln( jj pp ⋅  is set 

to zero. To estimate H, the area proportion was estimated by ∑
=

=
s

j
jjj AAp

1

ˆ/ˆˆ  and 

inserted for jp in formula (2). Being a ratio estimator jp̂ is slightly biased. The 

estimator of H can be shown to underestimate the true value. By a Taylor 

expansion, the absolute size of the bias can be shown to be approximately equal to 
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( ))ln(2/()1 snt ⋅⋅− , where t is the number of land cover types actually present in 

the landscape.  

2.4.2. Edge length and edge density    

The estimators of total edge length and edge length for a single class were based 

on the method of Matérn (1964). The edge length can, given random sampling 

lines or edge directions, be estimated without bias by simply counting the number 

of intersections between a polygon border and line transects. According to Matérn 

(1964) and De Vries (1986), the total edge length estimator T̂  (m ha 1− ), using 

multiple sampling lines of equal lengths, is given by  

cn
mT

⋅⋅
⋅⋅

=
2

10000ˆ π  (3) 

 
where m is the total number of intersections, c is the length of the sampling line 

per configuration  (m), and n is the sample size. For estimating edge density of a 

single land cover class j, the estimator used was jjj ATD ˆ/ˆˆ = , where jT̂  is the 

estimator (3) with jmm = , the number of intersections with a class j border. If 

0ˆ =jA  then jD̂  is undefined. It was also found during the simulations that jD̂   

were very unstable if the number of intersections was low. Hence, for single class 

edge density only estimated values based on at least four intersections were 

accepted. This number was chosen arbitrarily but was found to be reasonable. A 

random distribution of straight lines on a land cover map with size 1 km2 is 

illustrated in Figure 2. 
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Figure 2. Illustration of random distribution of straight line transects on a land 

cover map (1 km2) 

2.5. Quantification of errors  

The properties of the estimators were derived through a large number of 

independently simulated samples for each sample and response design and NILS 

square. For an estimator, Ŷ say, the expected value was estimated by the mean 

over simulations 

∑
=

=
M

i
iY

M
YE

1

ˆ1)ˆ(ˆ  (4) 

where iŶ  is the estimated value for the ith simulation and M is the number of 

simulations. The estimated bias is YYE −)ˆ(ˆ  where Y is the true value. The root 

mean square error, RMSE, was estimated by  

∑
=

−=
M

i
i MYYRMSE

1

2 /)ˆ(   (5) 

In case of an unbiased estimator, RMSE is the same as the estimated standard 

deviation of the estimator. Finally the mean value of the estimated bias and RMSE 

over the 50 squares was calculated.  
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     The results are reported as means over the 50 squares of the relative values for 

RMSE and bias. Furthermore, the efficiency of a sampling design should be 

evaluated in relation to costs and accuracy, as done for example by Ståhl (1998), 

Corona et al. (2004), Esseen et al. (2006), and Ramezani et al. (2009).  

 

2.6. Effect of sample size and line length on the RMSE 

The rate of decrease of RMSE with increasing sample size and/or line length was 

studied by the model 

ijkjkkjiijk eulncz +++++= λβαµ )ln()ln(  (6) 
 

Here ijkz  is the logarithm of the RMSE for square i, sample size j, line length k; 

jn and kl  are sample size and length; )))(ln()(ln( lknjjk mlmnu −−=  where nm  

and lm  are the means of )ln( jn  and )ln( kl  over the data set (here 3.6221 and 

4.3175);   ,, βαµ and λ  are fixed parameters; ic are random square effects with 

zero expectation and variance 2
cσ and ijke  are random within square errors 

assumed to be uncorrelated to the ic , with zero expectation and variance 2
eσ . A 

non-zero λ  shows interaction between size and length. The jku  are uncorrelated 

to )ln( jn and )ln( kl , hence the estimates of α and β  will be the same whether the 

term jku is included or not. The random variable ic expresses the general level of 

the RMSE of the square i. For random line location α  should, in case of zero 

interaction, be at least approximately equal to  − 5.0  and for values of α  smaller 

than 5.0−  the decrease with sample size is faster than for random locations. 

For β , values larger than 5.0−  are to be expected due to positive spatial auto-

correlation. The larger the value ofβ  the less is the decrease of RMSE with line 
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length. The parameterβ  could be compared with the corresponding parameter of 

the so called Fairfield Smith’s law for plot based sampling (Smith 1938). The 

variances of c and e tell us how much of the variation in RMSE is due to the 

variation between and within squares, respectively. 

    The model, if it is a good approximation, could be used to find an optimal 

sample size and line length by minimizing the expected RMSE (or its logarithm) 

for a given cost. The expected logarithmic RMSE is obtained by deleting the c 

and e terms in (6) and )( 21
γlCCnC ⋅+⋅=  is suggested as a fairly general cost 

function, where γ and , 21 CC all are positive. Suppose first there is no 

interaction )0( =λ . Rearranging the cost formula in terms of n and substitute this 

expression for n into the expected logarithmic RMSE and upon taking the 

derivative we get 







−+⋅= )()(

2

1 γαβ
β γl
C
ClG

dl
dRMSE , where 0)( >lG  for all l. 

Since 0<β  the derivative is negative if 0≤− γαβ  and RMSE is then 

monotonically decreasing with line length. Otherwise the optimal line length is 

given by
γ

βαγ
β

/1

2

1

)( 







−

⋅=
C
Clopt . If 0≠λ  there is no explicit solution and we 

have to rely on numerical methods. Easiest is to substitute for n as above and then 

calculate the RMSE for a number of lengths (using some search method).  

 

2.7. Time study 

The time needed for data acquisition was recorded for the line intersects sampling 

in a separate time study. An experienced (NILS) photo-interpreter counted the 

total number of intersections and determined the line lengths within different 

polygons for total edge length/density and Shannon diversity, respectively. In the 

case of forest edge density the interpreter measured the line lengths within the 
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forest class polygons (seven class system) and counted the total number of 

intersections between forest class borders and transects. Only straight lines of 

lengths 37.5 and 150 meters were tested. The time study was performed on raw 

images (non-delineated aerial photos) and the photo-interpreter identified and 

counted borders among land cover types along transects without any previous 

polygon delineation. A moderate number of subjectively chosen NILS squares 

with good fragmentations were used. The interpreter had to find the lines 

manually in the image but the registrations were in principle made automatically. 

The time for pre-processing the images was not included. The average values are 

given in Table 2. The effect of the number of crossings had little effect on the 

time.   

 
Table 2. Estimated time for two different lengths of sampling lines for edge length 
and Shannon diversity estimators. Straight line configuration. Level 1 
classification system.  
 
 

Sampling line length per 
configuration (m) 

 Edge length estimators  Shannon diversity estimator 

 Average time a          
(minutes) 

 Average time b         
(minutes) 

 Average time c                 
(minutes) 

37.5  0.12  0.15  0.19 
150  0.16  0.17  0.36 

   a  The estimated time to determine the line length within the forest class in     
minutes per line   
   b  The estimated time for counting the number of intersections in minutes per 
line 
   c  The estimated time to determine the line lengths within different classes in 
minutes per line  
 

For the wall-to-wall mapping case, polygon delineation and classification of a 

NILS squares takes on average 3.5 hours (pre-processing not included) (Allard et 

al. 2007). To classify land along a line is not the same procedure as when polygon 

delineation is adopted. This does not affect the time study since the time for 

necessary detours from lines is included. Also, according to the photo interpreters 
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involved, for the classification system used, the difficulties to classify are the 

same.     

 
 3. Results  

3.1. Shannon’s diversity index 

The Relative RMSE of the Shannon diversity estimator Ĥ , averaged over the 50 

squares, for the level 1 classification system is shown in Figure 3.  
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  Figure 3. Relative RMSE of the Shannon diversity estimator for different 
sampling line lengths and configurations. Systematic sampling design, random 
orientation, level 1 classification system and two sample sizes (25 and 49) 
 

For all three sampling line lengths, the systematic design resulted in a lower 

RMSE than did the random one. The true value of the Shannon diversity varied 

for the level 1 classification system between 0.024 and 0.787 over the 50 squares. 

      A comparison of the RMSE of Shannon diversity was made for the fixed and 

random orientations of the line transects. The random orientation of line transects 

resulted in a slightly lower RMSE. This was true for all five configurations, three 

different sampling line lengths and four sample sizes. 

    There was a negative and small bias for Ĥ  though the area proportion of land 

cover type can be estimated almost without bias. (An example of true and 

estimated values of forest class area is provided in appendix 3). This is due to the 

nonlinearity in the definition of Shannon diversity estimator. In all combinations 
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considered, the bias decreased with increasing number and length per 

configuration of sampling lines (Fig. 4). 
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Figure 4. Relative bias of the Shannon diversity estimator for different sampling 
line lengths and configurations. Systematic design, random orientation of line 
transect, level 1 classification system and two sample sizes (25 and 49). 
 

The general results were true in the level 2 classification system (with 20 classes) 

as well. 

 

3.2. Edge length and edge density  

The true values of the total edge density varied between 9.4 and 220.9 (m ha 1− ) 

over the 50 squares. The relative RMSE of the total edge length estimator for the 

level 1 classification system is shown in Figure 5. Total edge density is, except for 

a scale factor, equivalent to total edge length.  
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Figure 5. Relative RMSE of total edge length estimator for different sampling line 
lengths and configurations. Systematic design, random orientation, level 1 
classification system and two sample sizes (16 and 25).  
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     A comparison of the relative RMSE of the total edge length estimator in two 

transect orientations showed that a random orientation of transects provided a 

lower RMSE in comparison to a fixed one (Fig. 6). 
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Figure 6. Relative RMSE of total edge length for the different orientations and 
sampling line lengths. Straight line and systematic design. 
 

     The edge length estimator was also studied for the single class of forest (level 

1). The estimated relative RMSE for the forest class, using the systematic design 

and random orientation of transect lines, is shown in Figure 7. Five squares 

without any representation of the forest class were excluded. The RMSE of edge 

density for a single class estimator showed the same behavior as total edge length 

(density) on the landscape level. The true values of the edge density for the forest 

class varied between 9.5 and 505.7 (m ha-1) over the 45 squares. 
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Figure 7. Relative RMSE of edge density for the forest class for different sample 
line lengths. Systematic design and random orientation and two sample sizes (25 
and 49). 
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    In general, the results for all three metrics were as follows. 

i) The systematic design was superior to the random one with respect to RMSE. 

This is in line with almost all areal sampling experiences. The reason is that the 

systematic design precludes observations at short distances, thus avoiding the 

negative effects of spatial auto-correlation.  

ii) The straight line configuration gave the lowest RMSE, followed in pairs by the 

L- and Y-shape and finally by the triangular and quadrat configurations. The 

reason is the same as above. For a given configuration length, the straight line 

results in observations most far apart. For landscapes with gradients the L- and Y-

shapes could be more competitive. For field inventories the triangle and square 

shape have traveling distance advantages.     

iii) The random orientation gave slightly less RMSE than the fixed one. The 

difference was small and might reflect some minor gradient in some or all of the 

landscapes studied. 

 

 

 

3.3. Effect of sample size and line length on the RMSE 

The parameters α , β  and λ  in the model (6) were estimated for the systematic 

and random designs, the straight line and quadrat configurations, both with 

random orientation and for all three metrics. The estimated values of the 

parameters are shown in Table 3.  
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Table 3. Estimated values of the parameters α  (for sample size), β  (for line 
length), and λ  (for interaction) for systematic and random designs, for level 1 
classification system. Standard errors are given within parentheses 
 
Population parameter Parameter Systematic design Random design 
Straight line configuration 

Shannon’s diversity 
index 

α  77.0−  (0.010) 55.0−  (0.004) 
β  41.0−  (0.012) 22.0−  (0.005) 
λ  06.0−  (0.017)  00.0− (0.007)  

Total edge length 
α  60.0−  (0.006) 50.0−  (0.002) 
β  57.0−  (0.007) 41.0−  (0.003) 
λ  07.0−  (0.010)  00.0− (0.004)          

Edge density for the 
forest class 

α  65.0−  (0.007) 55.0−  (0.003) 
β  56.0−  (0.009) 40.0−  (0.004) 
λ  05.0−   (0.012)  00.0− (0.006) 

Quadrat configuration 

Shannon’s diversity 
index 

α  77.0−  (0.012) 54.0−  (0.004) 
β  37.0−  (0.015) 18.0−  (0.005) 
λ  15.0−  (0.021) 00.0− (0.007) 

Total edge length 
α  59.0−  (0.008) 50.0−  (0.002) 
β  60.0−  (0.009) 46.0−  (0.003) 
λ  10.0−  (0.013) 00.0− (0.004) 

Edge density for the 
forest class 

α  65.0−  (0.009) 53.0− (0.003) 
β  60.0−  (0.011) 43.0−  (0.004) 
λ  11.0−  (0.015) 00.0− (0.006) 

 

The values for the random design are as expected, with no interaction. For the 

systematic design a certain interaction was found and its sign shows that an 

increase in configuration length is relatively more favorable for large sample sizes 

than for small. For example, for the Shannon index the marginal β  equals 37.0−  

for the sample size 16 and 45.0−  for the sample size 100. The values for the two 

configurations are very close, except for the interaction. Especially for the 

Shannon diversity the decrease in RMSE with sample size is faster for the 

systematic design than for the random one.  

   The fit was good, with adjusted R-square over 91 % in all 12 cases. The 

variance ( )2
cσ  between squares were considerably higher than within ( )2

eσ , in 10 
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of the cases it contributed to over 90 % of the total variance.  

 

3.4. Time study 

The relationships between RMSE of estimators and time (cost) for estimating total 

edge length (density), edge density for the forest class and Shannon diversity are 

shown in Figure 8. In the case of total edge length, with a given sampling budget, 

the magnitude of RMSE decreased with the length of the sampling lines. The 

same was true for the edge density estimator for the forest class. In the Shannon 

diversity case, however, with a given cost, there was no difference between long 

and short lines.  
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 Figure 8. Relationships between time (cost) and the RMSE of the total edge 
length /density (top), edge density for the forest class (middle) and Shannon 
diversity (bottom) estimators for different sampling line lengths, according to 
Table 2. Random design, straight line.  
 
     About the same results were obtained by the model (6) and the cost function 

suggested. The results are not general and should be seen as an example. A value 

of 1C  corresponding to 5 seconds seemed realistic from the time study. The 

remaining parameters of the cost function was equated to the observed average 

times and the values obtained were 0.5, 2.0 and 0.32 for 2C  and 0.7, 0.2 and 0.5 

forγ  for the Shannon diversity, total edge length and forest class edge density 
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respectively. Due to the interaction the optimal transect length for the systematic 

design depends on the total resource C and more resources leads, due to the sign 

of λ , to longer transects as long as they are within the allowable range. For edge 

length and edge density the maximum length of 150 meters was optimal within 

the range and markedly superior to short lengths, both for systematic and random 

design. For the Shannon diversity and systematic design the optimal length, given 

a resource of 10 minutes per square, was about 70 meters. For the random design 

it was 140 meters. However, for the Shannon diversity the difference in RMSE, 

for a given cost, differed from the minimum RMSE by only a few percent within 

the allowable range. Hence, the RMSE could, for a given cost, be considered as 

almost independent of line length. It should be noted that for field inventories the 

parameters of the cost function will be quite different, with 1≥γ  for example, 

favoring short line lengths. 

 

4. Discussion  

This study indicates the potential of using sample-based assessment of landscape 

metrics by line intersect sampling (LIS) as an alternative to wall-to-wall mapping 

for estimating the basic metrics Shannon diversity and edge length/density. The 

sample design can be used both in remote sensing imagery and in the field.  

     Total length of linear features in landscape can be estimated without bias using 

LIS if sample lines and/or population of interest (objects) are randomly oriented 

(DeVries 1979, Kaiser 1983). Corona et al. (2004) found, on aerial photos, that  

LIS can result in an accurate estimate of total edge length. They found LIS to be 

more efficient than the traditional method of polygon delineation and found 

longer sampling lines to be better than short ones, similarly as in the present 

study. They did not find any significant difference between systematic and 
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random designs. The authors did not test other transect configurations than the 

straight line. LIS was also used by Hansen (1985), Dahm (2001) and Matérn 

(1964) for estimating total length of linear landscape features.  

     LIS has been used in sample surveys for different purposes. For instance, it 

was applied by Hazard and Pickford (1986) in estimating forest residue. They 

compared three different configurations straight line, L, and Y shapes in two 

different simulated spatial patterns of forest residue. They concluded that, for a 

simulated population, L and Y shapes were more efficient than the straight line 

configuration. The authors also found that systematic sampling was more efficient 

than the random design. Ringvall and Ståhl (1999b) and Fjellstad and Dramstad 

(1999) used LIS to assess parameter values for sparse populations and to estimate 

changes in areas and transitions between land cover types, respectively.  

      Statistical performance of estimators of some landscape metrics were 

discussed by Hunsaker et al. (1994) using plot sampling method on satellite-based 

land cover map. The shape index in term of fractal geometry and the dominance 

(equivalent to the Shannon diversity) metric had bias whereas the contagion 

metric was unbiasedly estimated.   

    Point sampling (dot grid) was applied by Ramezani et al. (2009) for estimating 

Shannon diversity and edge length metrics, where the area of a buffer generated 

around polygon borders was used for estimating edge length. The authors 

concluded that the method appears to be an efficient alternative to wall-to-wall 

approach.  

For the study, 50 randomly selected Swedish landscape maps from the NILS 

monitoring program were used. There were several reasons for choosing real 

landscapes instead of simulated. The methods studied are intended for application 

on real landscapes why the results are of direct use. By simulation it is not likely 
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that the large variation in landscape patterns that exist in reality is created. Also 

the time study required real photos. A drawback is that we cannot deliberately 

create patterns to stress certain properties of the methods.    

      All results reported are obtained for the estimator based on an assumption of 

completely random direction of sampling lines and/or population edges. Two 

other estimators were also tested, the basic Horvitz-Thompson estimator, 

conditional on the intersection angle (Thompson 2002) and an estimator assuming 

a uniform angle distribution within which of the three thirty-degree sectors 0-30, 

30-60 or 60-90 degrees the intersection was observed. The estimator is obtained 

by changing the factor 2/π  in the basic estimator used to 3/)32( +π  , 

6/)31( +π  or 3/π  depending on sector. The factors are the inverses of 

expected )sin(v within the sector. The RMSE was found to be considerably larger 

for the two alternative estimators and all cases studied. 

     The results of a statistical model for RMSE demonstrated that the effect of line 

length is larger for both designs for the two edge parameters than for the Shannon 

diversity. For the systematic design and the edge parameters the result even 

indicates negative auto-correlation of edge intersections along sampling lines. 

This could be explained by some regularity in the landscapes and that few very 

small polygons are present, implying that clusters of intersections are rare. The 

estimator of the Shannon diversity is to a high degree based on area estimation 

and its RMSE is not much affected by such spatial regularity. The estimates of the 

two variance components of the model revealed, not surprisingly, that the total 

variation of (logarithmic) RMSE, for given line length and sample size, was 

mostly due to a variation of RMSE among squares, not within. By estimating their 

fixed counterparts it is possible to find what landscape features determine the 
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magnitude of the RMSE. For Shannon diversity it was found that the larger the 

actual number of cover classes present in the square, the larger the RMSE; 

however considerable variation still exists. For total edge length almost all of the 

variation in logarithmic RMSE over squares was explained by the true 

(logarithmic) total edge length, and the larger the edge length, the larger the 

RMSE. For edge density of the forest class, the true edge density explained some 

of the variation, but so did also the total forest area. The RMSE increased with 

true density and decreased with increasing area, the latter reflecting the effect on 

the density estimator of the area estimator part, for which the relative RMSE 

decreases with true area.   

        The time study revealed no large differences in interpreting times between 

short and long line lengths, which favors the latter alternative with respect to cost-

efficiency. One reason is naturally that the scale on the interpreter’s screen could 

be adjusted for the lengths. Another reason is that a non-negligible part of the time 

was spent to move the cursor between the different lines. The number of 

intersections had very little effect on the time except if they were very few. The 

average time needed to determine the lengths within the forest class was shorter 

than to determine the number of intersections. This is explained by lines being 

easily recognized to be entirely within or outside the forest class, thus many 

intersections were between other classes, and that the lengths were quickly 

measured by a computer application. Another application, not used but possible to 

implement, consists in finding the lines automatically and this would likely 

change the time relation between short and long lines. The results of the time 

study should thus be considered with caution due to available computer facilities 

and also to the complexity of the landscape (i.e. for a more detailed classification 

system than used here). The main result of the time study is, in the present case, 
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nevertheless, that long lines are cost-efficient, perhaps even longer than those 

tested here. To judge where LIS is cost-efficient compared to wall-to-wall 

mapping we have to know the desired accuracy for different parameters, for 

example total edge length. According to Figure 8 it is possible to get an expected 

relative RMSE of about 15 percent within half an hour, whereas complete wall-to-

wall mapping of the same area takes about 3.5 hours. In the Shannon diversity 

case, it takes half an hour for achieving a RMSE of about 1 in absolute term, with 

line 150 m.   

     In sample based assessment of landscape metrics, the efficiency of a sampling 

and response design depends on the selected metric. For instance, point sampling 

may be a more efficient method than LIS for Shannon diversity through area 

estimation. In contrast, LIS might be preferable to point sampling for estimating 

total edge length. Hence, for estimating a more complex metric like edge density 

for a certain class (e.g., forest), a LIS design could be used for the edge length and 

a point sampling design for the area. This suggests more complex designs, for 

example, using a LIS with central points in the lines, supplemented with extra 

points for area estimation and the lines for edge length estimation. Another area 

for further investigation is two-stage designs for estimating metrics for large 

landscapes, where squares can be used as first stage sampling units.  
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Appendix 1. Estimated relative range and mean of SE of RMSE for Shannon 
diversity over the 50 squares for selection of sampling and response designs, 
obtained by 10 replications of each case and square.  
 

Parameter set Sample 
replication Range Mean Sampling 

Design a 
Sample   

size Conf. b Length c     
(m) 

1 16 1 1 1000 0.9-4.5 2.3 
1 16 3 1 1000 0.7-4.0 2.1 
1 16 5 1 1000 0.6-3.2 2.1 
1 16 1 3   600 1.3-4.5 2.7 
1 16 3 3   600 1.5-5.1 3.0 
1 16 5 3   600 1.2-4.8 2.8 
1 25 1 2   800 1.1-3.7 2.3 
1 49 1 2   600 1.1-3.7 1.1 
1 100 1 1   600 1.2-3.9 2.4 
1 100 1 3   300 2.3-6.1 3.8 
2 16 1 1 1000 1-4.4.0 2.3 
2 16 3 1 1000 1.4-4.6 2.3 
2 16 5 1 1000 1.4-4.9 2.3 
2 25 1 2   800 1.7-4.5 2.7 
2 49 1 2   600 1.6-5.3 3.0 
2 100 1 1   600 1.5-4.7 3.0 
2 100 1 3   300 1.6-6.2 4.1 

a Sampling design; Systematic=1, Random=2 
b Configuration; Straight line=1, Y =3, Quadrat=5  
c Configuration length; 37.5=1, 75=2, 150=3  
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Appendix 2. Estimated relative range and mean of SE of RMSE for total edge 
length and edge density of forest class over the 50 squares for selection of 
sampling and response designs, obtained by 10 replications of each case and 
square 

Parameter set Sample 
replication Range Mean Sampling 

Design a 
Sample 

size Conf. b Length c 
(m) 

Total edge length 
1 16 1 1 1000 1.0- 4.9 2.4 
1 16 3 1 1000 1.4- 3.8 2.4 
1 16 5 1 1000 1.1- 5.1 2.2 
1 16 1 3   600 1.1- 5.9 2.8 
1 16 3 3   600 1.5- 5.7 2.8 
1 16 5 3   600 1.4- 4.4 2.7 
1 25 1 2   800 1.2- 3.7 2.4 
1 49 1 2   600 1.2- 5.6 2.8 
1 100 1 1   600 0.9- 5.1 2.3 
1 100 1 3   300 2.3- 6.3 3.9 
2 16 1 1 1000 1.1- 5.3 2.5 
2 16 3 1 1000 1.7- 4.6 2.6 
2 16 5 1 1000 1.1- 6.8 2.5 
2 25 1 2   800 1.2- 4.2 2.5 
2 49 1 2   600 1.6- 4.7 2.7 
2 100 1 1   600 1.3- 4.1 2.5 
2 100 1 3   300 1.6- 6.5 4.0 

Edge density of forest class     
1 16 1 1 1000 1.7-12.4 3.5 
1 16 3 1 1000 1.3-13.1 3.5 
1 16 5 1 1000 1.4-15.6 3.4 
1 16 1 3   600 1.1-13.4 3.3 
1 16 3 3   600 1.6- 7.4 3.2 
1 16 5 3   600 1.5- 7.2 3.3 
1 25 1 2   800 1.2- 4.3 2.6 
1 49 1 2   600 1.6- 6.6 3.1 
1 100 1 1   600 0.6- 5.0 2.2 
1 100 1 3   300 2.6- 6.2 4.1 
2 16 1 1 1000 1.6-17.3 4.5 
2 16 3 1 1000 2.1-20.4 4.6 
2 16 5 1 1000 1.1-29.5 4.8 
2 25 1 2   800 1.4-10.0 3.4 
2 49 1 2   600 1.8 - 7.0 3.1 
2 100 1 1   600 0.6- 5.2 2.6 
2 100 1 3   300 2.1- 7.1 4.2 

a Sampling design; Systematic=1, Random=2 
b Configuration; Straight line=1, Y =3, Quadrat=5  
c Configuration length; 37.5=1, 75=2, 150=3  
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Appendix 3. An example of true and estimated values of forest class area. Level 1 
classification system. For straight line configuration, sample size 16, transect 
length 37.5 (m), random design and transect orientation.  
 


	where   is the estimated value for the ith simulation and M is the number of simulations. The estimated bias is  where Y is the true value. The root mean square error, RMSE, was estimated by
	In case of an unbiased estimator, RMSE is the same as the estimated standard deviation of the estimator. Finally the mean value of the estimated bias and RMSE over the 50 squares was calculated.



