
Taper and Volume Equations for Poplar 

Trees Growing on Farmland in Sweden  

 

Birger Hjelm 
Faculty of Natural Resources and Agricultural Sciences  

Department of Energy and Technology 

Uppsala  

Licentiate Thesis 

Swedish University of Agricultural Sciences 

Uppsala 2011 



 

 

ISSN 1654-9406 

ISBN 978-91-576-9035-7  

© 2011 Birger Hjelm Uppsala 

Print: SLU Service/Repro, Uppsala 2011
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Abstract 
Effective management of poplar plantations for high yield production would be 

facilitated by the availability of improved equations for predicting the taper and 

volume of poplar stems. Therefore, this thesis is based upon a polynomial stem 

taper equation and two volume equations constructed for individual poplar trees 

growing on farmland.  Data for fitting and evaluate the taper and volume equations 

were collected from 51 trees growing in 27 stands in central and southern Sweden 

(lat. 55-60° N). The mean age of the stands was 22 years, mean density 970 stems 

ha
-1

, and mean diameter at breast height 24 cm. Validation data were collected 

from 17 trees growing in ten stands, not used for fitting the equations.  

The outputs of the polynomial taper equation were compared with five published 

equations. The statistical evaluation indicated that the variable exponent taper 

equation presented by Kozak (1988) performed best and can be recommended. 

Because this equation´s complex construction, alternative recommendations were 

made. The constructed taper equation and the segmented equation presented by 

Max & Burkhart (1976) were second and third ranked.  

The first constructed stem volume equation is a function of diameter at breast 

height (DBH) and total height (H) as independent variables. In addition to these 

variables the other is also a function of an upper diameter. The outputs of these two 

equations were analyzed and compared to those of five published equations 

developed for, or applied on, poplar or aspen species. Of the stem volume 

equations examined the best performance was provided by the constructed 

equation with an additional upper diameter and recommended when precise and 

accurate volume estimations are required. However, because of difficulties to 

measure diameters high above ground, this equation is less practical in traditional 

surveys. For this purpose, the first constructed equation or the equation developed 

by Fowler & Hussain 1987 can be recommended.  

The taper and volume equations recommended in the study are likely to be useful 

in optimizing the efficiency and profitability of poplar plantation management. 
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1 Introduction 

1.1 Poplars characteristics and distribution  

 

Poplar belongs to the genus Populus of the Salicaceae family, which also 

includes the genus Salix. European aspen (Populus tremula L.) is the only 

domestic species of Populus in Sweden. All poplar species and clones are 

introduced in Sweden. The natural distribution of Populus extends from the 

tropics to the latitudinal and altitudinal limits of tree growth in the Northern 

hemisphere (Dickman & Kuzovkina, 2008).  

 

Members of the genus Populus are deciduous or (rarely) semi-evergreen 

and divided into six sections: Abaso (Mexican poplar), Aigeiros 

(Cottonwoods and black poplar), Leucoides (swamp poplars), Populus 

(white poplars and aspens), Tacamahaca (balsam poplars), and Turanga 

(arid and tropical poplars). Poplars usually have rapid growth rates, which 

enable some to grow to large sizes, notably some cottonwood species of 

North America (P. deltoides, Batra ex. Marsh and P. trichocarpa, Torrey & 

Grey) and some Asian balsam poplars (P. maximowiczii, Henry and P. 

suaveolens, Fisch). They can become enormous trees, with diameters at 

breast height (DBH) of 3 m and total heights (H) exceeding 40 m. Members 

of the genus have proved to be amenable and attractive targets for genetic 

mapping and cloning of desired characteristics, for example growth rate or 

pathogen resistance. Populus species are dioecious (i.e. individual trees are 

either male or female), and can be regenerated by coppicing and from 

cuttings.  

 

Various species of the genus have been widely planted around the globe, 

both within and outside its natural distribution (including various sites in 

the southern hemisphere) and have a wide range of uses, inter alia for:  
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 saw timber — the wood is soft, with a low density and light colour. 

It is used for furniture frames and other indoor uses including 

framework and roof trusses. 

 veneer —  traditionally used for making fruit crates and boxes, 

since it does not taint the fruit, and a number of other products, 

ranging from plywood to matches.  

 reconstituted wood — the development of oriented strand board 

(OSB) has opened new markets for poplar wood, especially in 

North America.  

 pulp wood 

 fodder 

 protection of stream banks  

 shelterbelts and windbreaks  

 fuelwood 

 phytoremediation  

 ornamental and landscape uses, including screening  

 

Until recently, planting of poplars in Sweden was confined to small 

plantations, established between 1980 and 1990 on set-aside farmland to 

assess their productivity. Plantations older than ten years in Sweden have 

less than 500 ha areas and are stocked (inter alia) with the well-known 

clone OP 42 (P. maximowiczii x P. trichocarpa). However, rising demand 

for biofuel has increased interest in poplar, among other species that are 

suitable for short rotations, in Sweden. Consequently, poplars have been 

planted recently, commonly at ca. 120 ha sites on forest land where 

previous stands were damaged by wind during the storm ―Gudrun‖ in 2005 

(Rytter et al., 2011). 

 

The advantages of growing poplar as an exotic species in short rotation 

forestry have been discussed in several recent publications from a 

production perspective (Jonsson, 2008; Christersson, 2010). Notable 

findings include the following. In an early experiment Persson (1973) 

found the productivity of 42-year-old ―Robusta‖ (P. deltoides x P. nigra,L.) 

poplar hybrids was quite high (ca. 12 m
3
 ha

-1
 year

-1
). However, Johansson 

(2010) recently showed that the productivity of hybrid poplars on former 

farmland is substantially higher, averaging ca. 19 m
3
 ha

-1
 year

-1
 (excluding 

branches, twigs and leafs). This is also substantially higher than the 

productivity of hybrid aspen plantations (ca. 13 m
3
 ha 

-1
 year

-1
), and much 

higher than productivities of plantations of various domestic species, e.g. 

birch (Betula spp.), alder (Alnus spp.), Norway spruce (Picea abies (L.) 

Karst.), wild cherry (Prunus avium L.) and hybrid larch (Larix decidua 

Mill. x Larix kaempferi (Lamb.) Carr.), which have reported mean annual 
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increments (MAI) ranging from 3 to 7 m
3
 ha

-1
 year

-1
 (Johansson 2010). 

Several authors have also considered ecological and environmental aspects 

of poplar plantations (Karacic, 2005; Christersson & Verwijst, 2006), but 

these will not be considered further here since the focus is on the stem 

volume and taper of the trees. 

1.2  Taper and stem volume equations 
 

1.2.1 Taper equations  

The terms ‗form‘ and ‗taper‘ are often used synonymously, but as noted by 

(Gray, 1956) ‗form‘ strictly describes the shape or structure of a tree‘s 

stem, e.g. a cone or paraboloid, whereas ‗taper‘ is defined as ‗the rate of 

narrowing in diameter in relation to increases in height of a given shape or 

form‘. The expressions ‗form factor‘ (for  a tree, the ratio of its volume to 

the volume of a cylinder, usually of equal diameter to the breast height 

diameter of the tree) and ‗slenderness‘ (DBH/H) provide general indication 

of a tree‘s form or shape, but do not provide any details about how the 

diameter narrows as the stem height increases. This detail can be provided 

using a taper equation. The major advantage of taper equations is their 

ability to predict the diameter of a stem at a given height or, following re-

arrangement, to predict the height of a stem with a given diameter at a 

given height. 

 

Numerous taper equations have been developed, and evaluated, for various 

tree species. They are generally based on trees‘ diameter at breast height 

(DBH), total height and the height above ground (to the point where the 

diameter will be predicted) as independent variables, providing estimates 

of: stem diameter at any given stem height, total stem volume, 

merchantable volume and merchantable height to any top diameter and 

from any stump height, and the volume of individual tree-logs of any 

length at any height from the ground (Kozak, 2004). Analysis of 

relationships between these above variables is important for two reasons 

(cf. Newnham 1988). Firstly, no single theory has been able to explain 

satisfactorily all the variability in tree stem shape. Secondly, taper 

equations provide flexible tools for estimating total and merchantable tree 

volumes, which can be used to adjust management objectives as market 

demands and product specifications change. From a practical perspective, 

the latter reason is the most important (Muhairwe, 1999).  

 

Stem taper is a complex trait (Assmann, 1970) that varies substantially 

depending on genetic factors (within- and among-species), environmental 

factors (inter alia soil type, hydrology, altitude and climate), forest 
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management practices (Steven & Benee, 1988; Karlsson, 2005) and 

interactions between all of these factors. The range of factors involved 

(natural and anthropogenic) complicates the development of a universal 

model for tree stem taper.  

 

As noted by Sterba (1980), many forms and types of stem taper equation 

have been published and evaluated. Models have been constructed to 

describe the taper of diverse species in various regions globally, based on 

equations of the following three types (Diéguez-Aranda et al., 2006; Sakici 

et al. 2008): 

1. Simple taper equations (Demaerschalk, 1972; Demaerschalk, 1973; 

Ormerod, 1973; Sharma & Odervald, 2001) 

2. Segmented taper equations (Max & Burkhart, 1976; Clark et al. 1991) 

3. Variable exponent taper equations (Kozak, 1988; Newnham, 1992) 

 

Until the mid-1970s all of the published equations were of the simple type 

(Figueiredo-Filho & Schaaf, 1999), and did not account for variations in 

the form of different tree sections (e.g. root/base, main stem & top) and 

hence did not adequately describe the taper of the stem either close to the 

base or at the top. Therefore, alternative procedures were examined to solve 

these problems. Max and Burkhart (1976) developed the first segmented 

equation, for which the tree stem was divided into three sections (neiloid, 

paraboloid and cone-shaped), represented by separate sub-functions.  

 

Variable exponent taper equations utilise an exponent that changes along 

the stem, reflecting differences between the neiloid, paraboloid and cone-

shaped sections (Kozak, 1988; Newnham, 1992). Assumptions for these 

approaches are that the form of a tree‘s stem varies continuously along its 

height (Lee et al., 2003). Variable exponent taper equations have been 

found to be superior to segmented and simple models for estimating stem 

diameters and volumes (Kozak, 1988; Newnham, 1992; Muhairwe, 1999). 

However, variable exponent taper equations cannot be integrated 

analytically to calculate total stem or log volumes (Diéguez-Arunda et al., 

2006), which must be estimated instead from calculated diameters and 

lengths by numerical integration (Kozak, 1988). 

 

A number of variants of both segmented and variable exponent taper 

models have been developed and applied, and the latter have been shown to 

exhibit less bias and have better predictive abilities than other models in 

several studies (Sakici et al., 2008; Li et al., 2010). However, despite the 

advantages of these two model types they have major drawbacks: statistical 

complexity and difficulties in estimating parameters and re-arrangement to 

calculate heights for given diameters. The variable exponent taper 
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equations provide the lowest degree of local bias and the most precise 

predictions (Kozak, 1988; Muirhairwe, 1999), but there is a need for simple 

equations in practical forest management. Simple polynomial taper 

equations have been frequently used in forest inventories in southern 

Brazil, notably the simple equation developed by Kozak et al. (1969), 

which has been assessed in several Brazilian studies (Figueiredo-Filho et 

al.,, 1996).   

1.2.1 Stem volume equations  

Several volume equations have been developed for various species. The 

volume of an individual tree depends on its height, diameter and stem form. 

The height and diameter are easy to measure and estimate, but the stem 

form is a complex trait that is not straightforward to estimate (Assmann, 

1970). Equations for the stem volume and commercial volume for specified 

commercial diameters (e.g. one equation for each specification) are the 

most commonly used in Scandinavian forest management. Compared to the 

compatible taper and volume equations they are ―stiff‖, equations with only 

one possible prediction value per tree and usually these equations are based 

on two independent variables: H and DBH (second entry equations). There 

are also equations based on the single independent variable DBH (Case & 

Hall, 2008; Gautam & Thapa, 2009) and equations with a third independent 

variable (third entry equations) or more, such as diameter at a specified 

upper height (Burk et al, 1989; Brandel, 1990), height at crown base, bark 

thickness, and/or site indicator variables such as, altitude, latitude, soil type 

and vegetation type. Some of the most important and well-known volume 

equations and stem volume models applied in Sweden are briefly described 

in the following text.   

 

A study published by Jonson (1928) presented a model dealing with stem 

curves and form classes, and a new method was introduced in which the 

stem is divided into two sections, the lower (2 m long) section is directly 

measured and the taper of the upper section is estimated from an upper 

diameter and a form class assigned to the section.  

 

Two major contributions were made by Näslund (1940; 1947), in which he 

presented two kinds of stem volume equations for Scots pine, Norway 

spruce and birch trees in northern, southern and all of Sweden: ―simpler‖ 

equations using the independent variables DBH and H; and ―advanced‖ 

equations using the additional variables crown height and bark thickness at 

breast height. The equations were constructed using data from >4000 

sampled trees, and have been frequently used.  
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Volume equations and tables for silver fir (Abies alba Mill.) were 

constructed by Eggli (1960), and Carbonnier (1954) presented volume 

equations for three larch species.  

 

Volume equations for ash (Fraxinus excelsior L.),European aspen (Populus 

tremula L.), common alder (Alnus glutinosa (L.) Gaertn.) and lodgepole 

pine (Pinus contorta, Douglas) were developed by Eriksson (1973). While 

Näslund‘s equations were additive polynomials Eriksson also developed 

multiplicative equations. Beside the variables DBH and H, Eriksson used 

crown height above ground and crown length in percent of tree height in 

some of his equations.  

 

Hagberg and Matern (1975) developed volume equations for oak (Quercus 

robur L.) and beech (Fagus sylvatica L.), using the approach applied to 

construct Näslund‘s equations (1940; 1947).  

 

A major study of volume equations for Scots pine, Norway spruce and 

birch in Sweden was published by Brandel (1990), in which a 

multiplicative base equation with DBH and H as independent variables was 

presented. Further variables (upper height diameter, crown height above 

ground and bark thickness at breast height) were then added to the base 

equation, either solely or in combination. Brandel also tested the potential 

for improving the volume estimations using the indicator variables altitude, 

latitude and forest type.  

 

Volume equations of multiplicative, additive and logarithmic variable 

exponent types for common alder and grey alder (Alnus incana (L.) 

Moench) in Sweden have also been developed and assessed recently 

(Johansson, 2005). 
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2 Objectives 

 

 

No taper or volume equations for individual poplar trees growing in 

Swedish conditions have been developed, and the applicability of published 

equations to poplar stands in Sweden has not been previously assessed. 

Therefore, the main aims of this thesis were to develop and evaluate new 

equations, and to evaluate the suitability of previously published equations, 

for estimating the taper and volume of poplar trees growing on farmland in 

Sweden. Based on the results of the evaluation, further aims were: to select 

and recommend taper and volume equations that can be conveniently 

applied to poplar trees in the field; and to select (a) volume equation(s) that 

provide(s) high levels of precision and accuracy, and can be recommended 

for use in evaluations of research trials and/or felled trees in routine cutting 

and management operations. 

 

The main specific objectives were:  

1. To develop and evaluate a simple polynomial equation for estimating the 

taper of poplars growing on farmland and to evaluate the performance of 

five published taper equations.  

 

2. To develop and evaluate two volume equations (two and three 

independent variables respectively) for poplars growing on farmland and to 

evaluate the performance of five published volume equations.  
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3 Material and methods 

This thesis is based on the work presented in Papers I and II. Paper I 

focuses on taper equations, describing the development and evaluation of a 

simple polynomial taper equation and evaluation of five previously 

published taper equations. Paper II describes the development and 

evaluation of two stem volume equations and evaluation of five previously 

published stem volume equations. The developed equations include one 

equation with DBH and H as independent variables (second entry equation) 

and another with these variables and an upper height diameter as an 

additional independent variable (third entry equation). 

3.1 Data 

The sites were located on former farmland, and most of the stands have 

been planted between 1988 and 1992. The stands were established as 

research-sites, for commercial use with focus on production, or as 

demonstration sites. The sites cover a variety of site- and stand 

characteristics, Table 1. The water table was 0.3 – 1 m deep, and apart from 

four fitting stands and one validation stand with till soils all other soils 

were clay sediments with textures ranging from light to medium clay. Data 

for constructing the taper and volume equations were collected from 51 

poplars growing at 27 stands in central and southern Sweden between 

latitudes 55-60° N. The ages of the stands at the sites ranged between 14 

and 43 years. The management of the stands varied; some had not been 

thinned at all and thinning regimes ranging from moderate to heavy had 

been applied in the others. The number of stems varied from 287 to 3493 

per hectare, which cover most of existing stand densities. In some stands 

the initial spacing and number of plants was known, but for most of the 

stands, these figures are unknown.  
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The models‘ future prediction quality was tested on independent data for a 

validating process (Kozak & Kozak, 2003). This data were collected from 

17 trees growing at ten stands, located within the same geographical area as 

the fitting data (Figure 1, Table 1). The mean age of the validation stands 

was 21 years (16-41) and the mean number of stems ha
-1

, 1038 (198-2900). 

 

The mean number of stems per hectare was calculated based on the number 

of stems counted in either whole stands or plots. The area of the studied 

plantations varied between 0.5 and 3 ha. In > 1 ha stands, a 1 ha plot in the 

central part of the stand was chosen, at least 5 m from the edges (to avoid 

edge effects caused by factors such as wind, open areas, ditches and 

shading by adjacent stands). The DBH was measured by cross callipering 

and the measurements recorded were rounded to the nearest mm. The 

arithmetical mean diameter was calculated for each stand. 

 

At each site, one to five sample trees were subjectively selected for 

measurements (due to restrictions set by the forest owner regarding future 

management of the stand) that were: healthy, undamaged, with fairly 

straight, single stems, and neither border trees nor suppressed trees.  In 

total, 51 trees were sampled to develop the stem taper and volume 

equations and 17 trees were sampled for validation of the equations. 

Generally, the DBH of the selected trees was within the third DBH 

distribution quartile of respective stand. For each tree the total height and 

crown height (height above ground to the base of the green crown) were 

measured and recorded to nearest 0.1m. The total age was defined by 

counting annual rings from a stem disc at stump height (0.2 m).    

 

DBH on bark and the diameter at 1 m intervals along the stem were 

measured by cross-callipering. According to routine methods applied in 

yield studies at the Department of Energy and Technology, SLU, Uppsala, 

diameters were also measured with cross-calipers at six relative heights of 

the trees (1, 10, 30, 50, 70, and 90 % of total height). The diameter 

measurements recorded were rounded to the nearest mm. The recordings of 

the diameter at the relative heights were used for the evaluations of stem 

taper presented in Paper I.  
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Figure 1.  Map of Sweden showing the locations of the three sampling areas in this study 
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Table 1. Main characteristic on hybrid poplar stands for the fitting and validation data 

 

Plot 

no 

Age, 

yrs 

Dom. 

Height, m 

DBH, cm 

Mean SD 

No. of 

stems ha-1
 

Basal area 

m2 ha-1 

Soil type 

Fitting data 

1 18 24.0 24.8 4.9 875   42.3 Light clay 

2 41 27.0 33.4 14.5 973   87.1 Light clay 

3 43 24.7 26.8 14.8 1906   107.5 Light clay 

4 17 20.2 17.6 6.5 550   11.1 Medium clay 

5 16 19.2 18.7 3.9 1111   30.5 Medium clay  

6 21 29.2 33.0 7.6 361   30.9 Light clay 

7 20 24.5 27.7 4.7 549   33.1 Light clay 

8 23 22.8 19.6 6.5 632   19.1 Light clay 

9 34 25.7 30.6 7.5 840   61.8 Light clay 

10 15 24.0 23.4 4.4 287   12.3 Light clay 

11 16 20.2 12.8 5.2 3279   42.2 Light clay 

12 19 28.5 24.6 3.9 1250   59.4 Medium clay 

13 19 18.5 24.0 4.1 295   13.3 Medium clay 

14 34 27.2 29.1 11.9 398   26.5 Medium clay 

15 24 25.9 29.3 3.9 457   30.8 Light clay 

16 19 14.5 19.3 3.3 1111   32.5 Medium clay 

17 20 14.6 18.2 3.3 1111   28.9 Medium clay 

18 20 20.1 17.4 4.0 800   19.0 Medium clay 

19 23 22.0 25.6 5.8 1005   51.7 Medium clay 

20 20 22.5 23.6 4.0 1015   44.4 Medium clay 

21 21 24.6 18.6 7.1 1200   32.6 Light clay 

22 19 21.5 23.2 4.7 650   27.5 Light clay till 

23 14 17.8 12.1 5.4 3493   40.2 Light clay 

24 17 21.2 22.6 5.8 378   11.2 Sandy-Silty tills  

25 21 29.1 28.3 3.7 506   31.8 Light clay tills 

26 19 27.6 28.0 9.4 440   27.1 Light clay tills 

27 20 29.5 25.1 3.4 707   35.0 Medium clay 

Mean 

SD 

22 

±7.3 

23.2 

±4.2 

23.8 

±5.2 

970 

±764 

37.2 

±20.8 

 

Range 14-43 14.5-29.5 12.1-33.4 287-3493 11.2–107.5  

Validation data 
1 17 24.8 29.8 4.4 520 32.4 Light clay 

2 21 28.0 31.0 2.2 800 40.4 Light clay 

3 20 27.0 27.2 3.6 800 32.4 Light clay 

4 41 22.0 27.9 10.3 1281 77.9 Medium clay 

5 18 26.0 27.3 4.6 909 45.7 Medium clay 

6 16 21.2 18.6 5.4 966 25.5 Light clay 

7 20 20.5 20.4 4.1 1461 47.8 Medium clay 

8 20 24.5 40.4 5.7 198 23.2 Sandy-Silty tills 

9 19 23.0 17.8 8.1 2900 79.7 Light clay 

10 20 27.0 34.9 6.4 549 52.1 Light clay 

Mean 

SD 

21 

±7.0 

24.4 

±2.5 

27.5 

±7.3 

1038 

±7.6 

45.7 

±21.8 

 

Range 16-41 20.5-28.0 17.8-40.4 198-2900 23.2–79.7  
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The two subsets of sample tree data are summarized in Table 2.  
Table 2. Summary statistics of the data set for equation construction and validation 

*( used for taper equations, paper I) 

The relative diameter and height points used for the fitting and validation 

data sets applied in Paper I are shown in Figure 2, while paired DBH and 

volume data points applied in Paper II are shown in Figure 3. 

 

 
 

Figure 2.  Paired data points of relative heights and relative diameters for the fitting and 

validating data sets 
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Relative height

Validating data

 No. of 

sites 

No. of 

trees 

No. of  

data 

points* 

DBH (cm) Height (m) 

Mean±SD Range Mean±SD Range 

Parameter 

estimate 
27 51 1285 27.6±9.1 12.4-49.5 22.7±3.4 15.0-30.0 

Validate  

equation 
10 17 431 30.2±7.4 21.4-46.5 23.5±3.3 19.4-27.6 
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Figure 3. Paired data points of diameter at breast height (DBH) and observed volume (paper 

II) for the sampled trees for fitting ○  and validation data    . 

3.2 The models 

Paper I 

Taper equation (I:1) was constructed and compared with five published 

stem taper equations (I:2-6) of which three were simple, one segmented and 

one variable exponent equation. The simple taper equation (I:2) was 

developed by Kozak et al. (1969) fitted for 19 species growing in British 

Columbia, Canada. This equation is not specific for poplars and has been 

used extensively for other species. Taper equation (I:3) published by 

Ormerod (1973) was developed for geometric simulation of tree component 

interaction during thinning extraction. Computational economy required 

development of a simple function. Taper equation (I:4), developed by 

Benbrahim & Gavaland (2003), was fitted for short rotation poplar 

plantations in France. The segmented taper equation (I:5) was developed by 

Max & Burkhart (1976) using sample tree data from plantations and natural 

stands of loblolly pine (Pinus taeda L.) in Maryland, North Carolina and 

Virginia, USA. The variable exponent taper equation (I:6) was developed 

and published by Kozak (1988) using data for several species, including 

cottonwood (Populus trichocarpa), Table 3. 
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Paper II 

Two volume equations were constructed, one with DBH and H as 

independent variables (second entry equation), equation (II:1), and one with 

an additional variable, diameter at an upper height (third entry equation), 

equation (II:7). A number of published volume equations were also initially 

tested and five equations, (II:2-6) were chosen for further analysis and 

evaluation. The published second entry equations have been developed for 

poplar or aspen, solely or as one of a selection of species, Table 3.  

 
Table 3. Stem Taper- and Stem volume equations used in paper I and II 

Model Expression  

Stem taper equations considered in Paper I: 

 

Simple equations 
Hjelm (constructed) d=(b1q

2+b2q+b3((H-h)/h)+b4)x(D/(1-k/H))b5   (I:1) 

Kozak (1969)  (d/D)2= b1 + b2 q + b3(h²/H²)  (I:2) 

Ormerod (1973) d=D((H-h)/(H-k))b1                 (I:3) 

Benbrahim &Gavaland (2003)   d= Db – Db((ln (1-h/ b1H)/- b2))
1/b3 

  (I:4) 

 

Segmented equation: 
Max & Burkhart (1976)       d2=D2(b1(q–1)+b2(q

2–1)+b3(a1–q)2I1+b4(a2–q)2I2) (I:5) 

 I1=1, if q< a1; 0 otherwise  

 I2=1, if q< a2; 0 otherwise  

 

Variable exponent taper equation: 
Kozak (1988)  d=b1D

b2b3
D((1–q0.5)/(1-p0.5))A (I:6) 

  A=(b4q
2+b5ln(q+0.001)+b6q

0.5+b7e
q+b8(D/H))  

 

Stem volume equations considered in Paper II: 

 

Second entry equations with independent variables D and H: 
Hjelm I (constructed) V = b1 D

b2 + b3 H 2 + b4DH2  (II:1) 

Eriksson II (1973) V=b1D
2+b2D

2H- b3D
2H2 -b4DH +b5DH2 (II:2) 

Anon. (1976)  V= e (b1 +b2lnD +b3lnH) (II:3) 

Fowler & Hussain (1987) V= b1 +b2D b3Hb4  (II:4) 

Opdahl (1992)  V= b1 + b2D - b3D
 2 + b4D

2H    (II:5) 

Wang (2007)  V= b1 - b2D
2 - b3H

2 + b4DH  (II:6) 

 

Third entry equation with the additional upper diameter variable: 
Hjelm II (constructed) V= b1 H

2 + b2DH2 + b3(D5-1)b4 + b5 (II:7) 

 

Where: 

D = diameter at breast height, cm 

Db = diameter at stump height, cm 

d = stem diameter, cm, at height h 
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H = total height, m 

h = height, m, from ground to top diameter (d) 

ai,, bi  = regression coefficients estimated from sample data 

q = h/H, relative height 

HI = height, m, of the inflection point from ground 

p = HI/H 

k = 1.3 m (breast height) 

V = total stem volume, in dm
3
, over bark from the stump to the tree tip  

D5 = diameter at 5 m above ground 

3.3 Statistical procedures 

All regression analysis were carried out using the SAS statistical package 

(SAS, 2006). The NLIN procedure was used in both Papers I and II for 

fitting and developing the constructed models, estimating parameters and 

evaluating the previously published models considered. The following 

statistics were used to assess the goodness of fit for the models addressed in 

Papers I and II:  

Where:  

R
2
 = Coefficient of determination                                                

B = Bias 

AB =Absolute Bias                                                                     

AB % = Relative Absolute Bias                                            

RMSE = Root Mean Square Error                                        

SSRR = Sum of Squared Relative Residuals          

d= stem diameter at the selected height along the stem      

v= stem volume  

Diff = difference between observed and predicted values 

R2 = 
 Paper I  

R2 = 
 

 
Paper II 

B = 
 Papers I & II 

AB = 
 Papers I & II 

AB % = 100 x  
Paper I  

AB %  = 100 x  
Paper II 

RMSE =  Papers I & II 

SSRR =  Paper I 
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The sum of squared relative residuals (SSRR) are an important statistic in 

analyses of differences between outcomes of taper equations (Figueiredo-

Filho et al., 1996), and according to Parresol et al. (1987) absolute bias 

(AB) and SSRR provide clear indications of the relative ability to model 

datasets. Relative absolute bias (AB %) was used by Li and Weiskittel 

(2010) complementary to AB when comparing and ranking the 

performance of different taper equations.  

 

To test the validity of the equations in paper I and II, a paired student T-

tests were applied (using the TTEST procedure in the SAS package) of the 

significance of differences between measured values and the values they 

predicted. 

 

Multicollinearity can pose problems when constructing taper and volume 

equations, especially models including complex polynomial and cross-

product terms. When severe multicollinearity is present in a dataset, the 

problems that may occur are that: 

(1) minor variations in the data may substantially affect parameter 

estimates,  

(2) the regression coefficients may have high standard errors 

(3) the regression coefficients may have the wrong sign.   

 

The level of multicollinearity of the equations tested in Papers I and II was 

determined by calculating condition indices, CI (the square root of the 

largest eigenvalue divided by the smallest eigenvalue of the correlation 

ratios) using the PROC REG procedure. CI values >30 are indicative of 

serious multicollinearity (Kozak, 1997). 

 

Ordinary least square method relies on the assumption that residual errors 

are independent and identically distributed. However, in contrary to 

development of volume equations with one estimate per tree, stem taper 

models are developed by hierarchical collected diameter data at several 

height points on the same individual tree. Then the data between the 

different points on the tree are closely dependent on each other. This 

autocorrelation violates on the above assumption of independence.  
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According to Kozak (1997) autocorrelated error terms in a model can result 

in following consequences: 

(1) the estimators of the regression coefficients are unbiased and consistent 

but no longer have the minimum variance property 

(2) the calculated mean squared error (MSE) may underestimate the real 

variance of the error terms, while the standard errors of the regression 

coefficients may underestimate the true standard deviation 

(3) statistical tests using t or F distributions and confidence intervals are no 

longer reliable    

 

AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) 

are common goodness of fit criteria when comparing model with dataset 

affected by autocorrelation. According to Li and Weiskittel (2010) these 

criteria are not appropriate for selecting and comparing taper equations 

when the response variables between the equations are not the same. The 

response variable for equation (1:2) and (1:5) differ from the other 

equations.  In order to determine how well the models fit the data, instead 

an analyze of residual plots (figure 3 in paper I) and the above ‖fit‖ 

statistics for paper I were used for the models and for data on different stem 

levels.  
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4 Results 

4.1 Paper I 
4.1.1 Fitting data 

All six taper equations considered in Paper I yielded high correlation 

coefficients between predicted and measured diameters (R
2
 = 0.99). The 

RMSE and AB values of the equations were lowest for equation (I:6), 0.89 

and 0.62 respectively, indicating that it has good ability to predict stem 

taper, while equations (I:2) and  (I:4) had the highest RMSE values of 1.48 

for both and AB values of 1.13 and 1.16, respectively.  

The absolute bias expressed in relative values (AB %) were between 5.6 

and 7.1 % for equations (I: 1-5) and notable lower, 3.8 %, for equation 

(I:6).  

Bias (B) was close to zero for equation (I:6) while the other equations had 

positive B values, ranging from 0.25 to 0.33, indicating that they slightly 

underestimate them. The detailed parameter estimates and results of 

evaluation statistics are summarized in Table 4 in Paper I.  

 

The AB values for the diameters at the relative heights in the fitting data 

show that equation (I:6) had the lowest absolute bias for diameters at 

relative heights ranging from 10 to 90 %. There were minor differences in 

SSRR values between the equations at 10 to 50 % relative heights, but 

equation I:6 had notably lower SSRR values for the upper part of the bole 

(70 and 90 % relative height). Equations (I:4), (I:5) and (I:6) performed 

substantially better in predicting diameters at 1% relative height than the 

other equations. All equations yielded high SSRR values at 90% relative 

height, but were lowest (3.49) for equation (I:6), and highest (7.43) for 

equation (I:3) (Table 5 in Paper I). 
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Equations (I:1) – (I:4) showed low levels of multicollinearity, with CI 

values of 10.2, 7.6, 2.8 and 2.5, respectively, while the values for equations 

(I:5) and (I:6) were 47 and 585, respectively, indicative of severe 

multicollinearity (Kozak, 1997).  

4.1.2 Validation of the equations 

The statistics describing the fit of the models to diameters at the relative 

heights in the validation dataset applied in Paper I show similar trends to 

the corresponding statistics in the data used to construct the stem taper 

equations in Paper I. Equation (I:6) had lower AB and SSRR values than 

the other equations, and the differences were most pronounced for the 

upper part of the stem. However, equations (I:5) and (I:6) had notably 

higher AB values for diameter at 1% relative height (1.49 and 1.73, 

respectively) than their values for the fitting data (Table 5 in Paper I). 

Equations (I:1) and (I:4) did not met the zero criterion for predicted 

diameter at the top of the tree (h=H), deviating by 0.5 and 0.3 cm, 

respectively, for both the fitting and validation data.  

 

The condition index, for detecting multicollinearity, showed the same trend 

for the validation data as for the fitting data, with CI <30 equations (I:1) – 

(I:4), 67 for equation (I:5) and >500 for equation (I:6).  

 

The residual plots for the validation data show a similar pattern to those of 

the data used to construct the stem taper equations (Figure 3, Paper I). 

Residuals of equation (I:6) have a smaller distribution than those of the 

other equations, indicating that it has the best ability to predict stem taper. 

In the plot of residuals versus relative heights the residuals are well 

balanced and distributed in an even manner for equation (6). The other 

equations are unbalanced to greater degrees, equations (I:2) to (I:4) being 

slightly more unbalanced than equations (I:1) and (I:5), as shown in Figure 

3 (Paper I).  

 

A paired Student‘s t-test applied on the measured and predicted diameters 

showed that equations (1) to (5) have p-values > 0.05 indicating that the 

difference between observed and predicted diameters is not significant.  

The results show only minor differences in the t-test statistics for equations 

(1) to (5). Equation (6) has lower values of SE and a smaller range (min to 

max) than the other equations indicating high precision, yet less god 

accuracy resulting in significant difference p <0.05 between predicted and 

observed diameters, (Table 6 in paper I). 
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4.2 Paper II 
4.2.1 Fitting data 

All volume equations addressed in Paper II had high correlation 

coefficients, R
2
 > 0.989. The RMSE and AB values of the evaluated 

equations were lowest for the third entry equation (II:7). The RMSE value 

for this equation was 26.14 and its AB value was 15.48 indicating good 

ability to predict stem volume, while the second entry equation (II:6) had 

the highest RMSE and AB values; 48.75 and 35.59, respectively. The 

values of relative absolute bias (AB%) shows that equations (II:1-5) have 

minor differences within a range of 3.7 to 4.1 %. Equation (II: 6) had the 

largest relative absolute bias of 5.1 % and equation (II: 7) the lowest 

absolute bias of 2.3 percent. Bias (B) was zero or close to zero (<0.02) for 

equations (II:4) and (II:6), indicating that they generally neither under- nor 

over-estimate the volume of poplar trees. Equation (II:3) had B value of 

2.23, indicating underestimation while the other equations have a bias ± 1 

indicating slight over- or under estimation. The parameter estimates and 

evaluation statistics for the studied equations are summarized in Table 4 in 

Paper II.  

 

The crown height variable and its potential to improve volume predictions 

were tested by step-wise regression, but it was found to make very little or 

no contribution.  

 

Equation (II:2) showed CI values >100, indicative of severe 

multicollinearity (Kozak, 1997).  

4.2.2 Validation of the equations 

Bias (B) and absolute bias (AB) values were higher for the validation data 

set than for the fitting data. The simple bias (B) values for the validation 

data ranged from -8.36 to -3.64 for the second entry equations (II:1 - 6)  

and -1.82 for the third entry equation (II:7). For the validation data the AB 

values for equations (II:1- 6) ranged from 38.6 to 43.3 and for equation 

(II:7) the AB value was 26.1. The results for the validation data show a 

similar trend to the results obtained for the data set used to construct the 

volume equations. The third entry equation (II:7) had notable lower B and 

AB values than the other equations. Among the second entry equations the 

constructed equation (II:1) had the lowest AB value, 38.6, but together with 

equation (II:2) the largest B value, -8.36 and -8.21 respectively, indicating 

higher tendency for overestimation. Equation (II:6) showed the highest AB 

value, 43.27 
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A paired Student‘s t-test applied on the measured and predicted volumes 

showed that all equations in the present study had p-values > 0.05, 

indicating that the difference between the observed and predicted diameters 

was non-significant.  There were minor differences in the t-test statistics for 

equations (1)-(6). Equation (7) has a mean more close to zero and a lower 

standard error (SE) and a smaller range (min to max) than the other 

equations, indicating both high accuracy and precision (Table 5 in paper II).  

 

Equation (II:2) showed high levels of multicollinearity for both the fitting 

and validation data.  

 

Low levels of multicollinearity and absolute bias combined with demand of 

variable easy to measure in field ranks equations (II:1), (II:3), (II:4) and 

(II:5) to be more suitable for routine forest surveys and inventories than the 

other equations.  

4.2.3 Five volume equations results on six validation trees  

The four most suitable equations (II:1, 3, 4 and 5) for routine surveys and 

the constructed third entry equation (II:7) were applied on six 

representative sample trees, two each collected from the three diameter 

classes: DBH < 25cm, 30cm < DBH < 35cm and DBH ≥ 40 cm. These 

sample trees were obtained from five stands in the validation data set.  

 

The small and medium sized trees (no. 1-4) were collected as follows: two 

trees (designated nos. 1 and 4; DBH 22.8 and 33.3 cm respectively) were 

selected from a 18-year-old stand with 910 stems per hectare; tree nr 2 with 

DBH 21.4 cm from a 20-year-old stand with 1460 stems per hectare and 

tree nr 3 from with DBH 32.1 cm from a 21-year-old stand with 800 stems 

per hectare. The two larger trees (designated nos. 5 and 6, DBH 40.0 and 

46.4 cm respectively) where chosen from two 20-year-old stands with 200 

and 550 stems per hectare respectively. 

 

The diameters of the larger trees (nos. 4 & 5) slightly exceeded the basal 

area-weighted DBH of their respective stands, while the diameters of the 

other sampled trees were close to the arithmetic mean diameter of their 

stands. The differences in predictions were greatest between the three 

second entry equations (II:1), (II:3), (II:4) and (II:5) and the third entry 

equation (II:7). While the scale of differences between observed diameters 

and those predicted by the second entry equation notably varied between 

the small, intermediate and large trees the variations in this respect for the 

third entry equation were minor (Table 4). 
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Table 4. The performance of five equations applied on six validation trees 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tree no. 1 2 3 4 5 6 

DBH (cm) 22.8 21.4 32.1 33.3 46.4 40.0 

Height (m) 23.4 19.6 27.6 25.0 23.5 27.0 

Trees ha-1 910 1460 800 910 200 550 

Volume m3 0.406 0.315 1.069 0.890 1.389 1.438 

 

 

Equation                                              

 

m3 

(deviance %)  
1
 

(II:1) 0.437 

(107.6) 

0.319 

(101.3) 

0.962 

(90.0) 

0.906 

(101.8) 

1.457 

(104.9) 

1.334 

(92.8) 

(II:3) 0.442 

(108.9) 

0.325 

(103.2) 

0.943 

(88.3) 

0.897 

(100.8) 

1.458 

(105.0) 

1.330 

(92.5) 

(II:4) 0.441 

(108.6) 

0.318 

(101.0) 

0.951 

(89.0) 

0.905 

(101.7) 

1.459 

(105.0) 

1.334 

(92.8) 

(II:5) 0.439 

(108.1) 

0.330 

(104.8) 

0.942 

(88.1) 

0.901 

(101.2) 

1.436 

(103.4) 

1.330 

(92.5) 

(II:7) 0.418 

(103.0) 

0.308 

 (97.8) 

1.034 

(96.7) 

0.885  

(99.4) 

1.445 

(104.0) 

1.369 

(95.2) 

1) deviance % =100 x (pred vol/obs vol), 

 (predict value equal to observed value results in deviance % =100) 
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5 Discussion 

In the present study the volume of the sample trees was calculated by 

applying Smalian‘s formula, Vol=(Area1 + Area2)/2) x length, on data for 

the 1-m sections and summing the results for each tree, which were also 

compared with calculated volumes based on 2-m and 3-m sections. 

 

Compared to the ―true‖ volume calculated by the 1-m section the deviance 

was almost negligible of the volume calculations for the 2-m section 

lengths (equivalent to <1% of the volume for 69 % and <2% of the volume 

for 94 % of the sampled trees). The deviance between volume calculations 

based on the 1-m sections and the 3-m section lengths were larger: < 1% of 

the volume for 46 % and < 2% of the volume for 76 % of the sampled trees. 

These findings indicate that for practical purposes recording diameters at 1-

m intervals may be unnecessary, since 2-m sections provide sufficient data 

to generate accurate taper and volume equations for poplar trees. To 

calculate volume on 3-m sections, or longer sections, indicate insufficient 

precision in the volume calculations since more than half of the sample 

trees has a deviance > 1% and 12 % of the sample trees show a deviance > 

3% in the volume calculations compare to calculations based on the 1-m 

sections. It is also possible to measure sections with different lengths at 

fixed heights and/or relative heights along the stem, as shown in previous 

sampling design studies that have examined the effects of varying the 

numbers and lengths of sections on the performance of taper equations 

(Newton & Sharma, 2008). 

 

Forest management parameters (initial spacing, cleaning intensity and 

thinning regimes), can affect the form and taper of individual trees (Steven 

& Benee, 1988; Karlsson 2005). Analysis of the slenderness 

(diameter/height, cm/m) of poplar trees examined in Paper I revealed that 

slenderness values are highest when the number of trees per hectare is less 

than 1500. This indicates that the stem form/slenderness, and thus the stem 
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taper, is correlated to some degree with the stocking and closure of the 

stand. In the dataset used for Paper I there are only a few measurements of 

trees in stands with 1500 to 3000 stems per hectare, thus general 

conclusions about the effect of stocking densities on stem slenderness are 

likely to be speculative. However, future planting and management 

strategies for poplar plantations intended to produce timber with specific 

diameters should take account of the effect of stocking density on average 

stem diameter. Thus, further research into plantation management strategies 

should include detailed analyses of correlations between stocking and tree 

form, using tools such as the stem taper equations developed in this study. 

This should help to increase yields of desired assortments. 

 

The validation dataset included measurements of trees at sites other than 

those used to develop the newly-constructed equations. The data are within 

the ranges of the fitting data set in terms of age, height and DBH, Table 2.  

 

However, unlike the fitting data, the validation set lacks data for trees at 

sites with dominant heights <20.5 m and mean diameters <17.8 cm  

(Table 1). Few young stands were available and priority was given to using 

data from these stands for fitting the equations.    

 

The systematic selection of sample trees used in this study should generally 

be avoided, but was necessitated by restrictions described in the Material 

and Methods section. According to Kozak (1997), systematic selection of 

sample trees could cause obtained regression coefficients to be biased and 

lead to greater under-estimation of true variations than a random selection 

strategy. These potential problems should be especially considered if the 

trees have been grown under various conditions within a site and there is a 

wide range of tree sizes. In the studies this thesis is based upon, however, 

this problem was minor since all stands considered were located on former 

farmland, conditions within the stands were nearly homogenous and the 

range of tree sizes was small. 

 

When using the studied stem taper and volume equations it is important to 

apply them on poplar trees with heights and DBH within or close to the 

range limits of the fitting data. Application on trees far out from the range 

might cause the predictive values to be unrealistic and for small trees the 

predictions can have negative algebraic values.    

 

The level of multicollinearity of the equations in both paper I and II was 

tested with respect to both the fitting and validation data to ensure that no 

potential problem of multicollinearity was present.  
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In Paper I equations (I:5) and (I:6) did suffer of multicollinearity while 

equations (I:1 – I:4) exhibit values below limit for multicollinearity.  

 

In paper II the most suitable second entry equations (II:1), (II:4) and (II:5) 

and third entry equation (II:7) the CI values were lower than the commonly 

used limit for multicollinearity (CI<30). However, the evaluated equation 

(II:2) showed a high multicollinearity level (CI >100). 

 

The results and trends are consistent for both the fitting and validation data. 

According to Kozak (1997) the presence of multicollinearity in a model 

does, however, not seriously affect its predictive capability. However, when 

selecting an equation, statistical models should be used to identify and give 

priority to equations with low multicollinearity.  

 

Potential problems with autocorrelation are obvious when constructing 

taper equations. The models are developed with dependent diameter data 

from several heights from the same individual tree which among other can 

cause problem with the regression coefficients. On the other hand, 

autocorrelation does not seriously affect the prediction capabilities 

according to Kozak (1997).   

The volume equations in paper II with only one independent volume data 

for each individual tree are not affected by autocorrelation as estimations 

on an individual tree is single based and not multiple hierarchical data. 

5.1 Taper equations 

Taper equations with a variable exponent that accounts for changes in 

shape along a stem (e.g. a neiloid root section, paraboloid mid-section and 

cone-shaped top section) provide better predictions of the diameter from 

ground to the top of a tree stem than simple and segmented taper equations 

(Kozak. 2004). Variable exponent taper equations generally have lower 

bias than other types of taper equations (Sakici et al. 2008) and the analysis 

of the taper equations in Paper I, based on the evaluation statistics 

presented in Tables 4, 5 and 6 in Paper I, confirms these findings. The 

relative absolute bias (AB %) for Kozaks variable exponent taper equation 

(I:6) was 3.8 %, which was lower than for the other taper equations in the 

study. 

 

Equation (I:4), developed by Benbrahim and Gavaland (2003), shows 

larger residuals based on the data used in Paper I than in the cited study (up 

to 6 cm versus <1 cm). This difference might be due to differences in data 

structure. The cited authors used data obtained from trees in young stands 

(7-8 years) with a mean height of 13 m and mean DBH of 12 cm, while the 
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fitting data used in Paper I were obtained from trees growing in stands with 

a mean age of 22 years (range 14-43 years), mean height of 23 m and mean 

DBH of 23 cm. Further, structure was observed in the residuals in Paper I, 

while Benbrahim and Gavaland (2003) observed no such structure. 

Generally, young poplars, such as those included in the study of Benbrahim 

and Gavaland, have not developed butt-swells on the stems. In contrast, the 

older trees sampled in Paper I had distinct and developed butt-swells from 

the ground to ca. 0.5 m up the stem. None of the studied equations could 

fully grasp this butt-swell, and most of the large residuals for the simple 

equations are related to this part of the stem. The occurrence of relatively 

large residuals related to the stump region is more pronounced for the 

simple equations (I:2) and (I:3) than for the other equations considered in 

this study (Figure 3 in Paper I).  

5.2 Stem volume equations 

When an upper height diameter is included as an independent variable 

together with DBH and H in volume equations (third entry equations) the 

performance of the predictions increases notably (Brandel, 1990; Kozak; 

2004). Analysis of the volume equations in Paper II, based on the 

evaluation statistics for both the fitting and validation data presented in 

Tables 4 and 5 in Paper II, confirms these findings.  

 

Including crown height as an additional independent variable did not 

improve the stem volume predictions, as corroborated by the relationships 

between crown heights and: stem volumes, diameters at breast height and 

total heights. Plots of crown height versus these variables show at best 

weak correlations with small R
2 

values. Volume equation (II:7) had lower 

values of RMSE, absolute bias (AB) and relative absolute bias (AB%) 

values and thereby provided notably better predictions of the total volume 

compare to the other volume equations (II:1) to (II:6) in Paper II. 

Moreover, equation (II:6) has notably higher AB values than the other 

equations for both the fitting and validation data sets. Equation (II:3) has a 

simple bias > 2 for the fitting data, which is indicative of under-estimations 

while the B values of the other volume equations are < 1.  

 

The newly-constructed equation (II:7) yielded the lowest RMSE values also 

in the validation exercise and had the lowest AB for both the fitting and the 

validation data (Tables 3 and 4 in Paper II). According to Parresol et al. 

(1987), AB values provide a clear distinction between examined equations 

and are important statistics for drawing conclusions and making 

recommendations regarding the suitability of equations for use in practical 

surveys. Results from the T-test on the validation data show that the mean 
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error of standard deviation (SE) were lower for equation (II:7) than for the 

other equations. This equation are thus suitable when there is a need for 

high precision and accuracy and trees are cut, or when time and technical 

equipment are available to measure diameters high above ground. 

Moreover, when this equation are applied to trees of varying sizes their 

performance varies less between modeling small and large trees than the 

two entry equations (Table 3). This equation is also suitable for precise and 

accurate measurements and evaluations of individual trees in research 

trials.  

 

The findings presented in Tables 4 and 5 in Paper II of higher bias (called 

mean in t-tests) in the validation data set than in the fitting data can be 

partly explained by the differences in structure between the two sets. This is 

partly because the fitting data include measurements of trees with smaller 

diameters at breast height than the validation set, for which the 

bias/residuals tend to be larger in terms of absolute m
3
 values. These 

findings can also be partly explained by the differences in size and 

distribution of the sets. The validation data set is smaller (n =17) than the 

fitting set (n=51), and the limited numbers of trees in the validation data 

were found to have a slight larger distribution around the mean compared 

to the fitting data, especially for trees with a diameter at breast height >30 

cm, Figure 2. 
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6 Conclusion 

6.1 Taper equations 

 

The poor performance for all equations at 90 % of stem height (Table 5 in 

Paper I) are not important from a practical point of view (Figueiredo-Filho, 

et al., 1996), since the top part of poplar stems (some meters below the top) 

is not used for any practical purpose except for bio-fuel. The variable 

exponent equation (I:6) yielded the lowest values of the absolute bias 

(AB),relative absolute bias (AB%), SSRR, and RMSE in evaluation 

statistics of all equations considered in Paper I (Tables 4 and 5 in Paper I) 

and performed well on the validation data. The statistical complexity with 

difficulties in rearrange equation (I:5 & 6) to predict height for a given 

diameter could be a practical reason for choosing other simpler equations. 

Other equations that could be recommended partly depend on the 

importance assigned to the criterion of the predicted diameter at the top of 

the tree (h=H). Equations (I:1) and (I:4) did not meet the zero top diameter 

prediction criterion. If a strict zero diameter prediction criteria at the top is 

not required, which is mostly the case from a practical point of view,  then 

the second ranked constructed polynomial equation (I:1) is recommended.  

6.2 Stem volume equations 

The three entry equation (II:7) perform well and is recommended when 

precise and accurate volume predictions are needed. However, due to the 

need of measuring an upper diameter, it is less useful and not appropriate 

for routine surveys and inventories, for which equations (II:1), (II:3), (II:4) 

and (II:5) are more suitable. There are small differences in RMSE, B, AB 

and AB% values between these equations for the fitting data (Table 4 in 

Paper II), but in a combined evaluation, also considering their performance 

on the validation data, equations (II:1) and (II:4) are recommended. 
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The studied and recommended volume equations can be used for robust 

calculations of volume at stand level. By volume calculations of individual 

stems and the sum of these volumes can then be recalculated to obtain 

estimates of volume per unit area (ha). This enables the development of 

volume tables and matrices of volume per hectare (m
3
 ha

-1
), which are 

some of the most important and frequently used tools in forest planning and 

management operations. The volume equations can also be used to 

calculate mean annual increment (MAI).  
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