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Abstract 

Semi-empirical topographic normalization methods (e.g., C-correction) 
have been widely used to correct illumination differences in optical satellite 
data. The objective of this study was to examine the precision and accuracy 
of the C-correction’s empirical parameter, c, as a function of the sample 
from which it was derived. Three sampling methods were compared: a 
random sample, a sample stratified on north and south aspects, and a 
sample stratified by cosine of the solar incidence angle, i. In the latter, 
power allocation was used to determine the quantity of observations for 
each stratum. Four overlapping satellite images were used (two Landsat 5 
TM and two SPOT 5 HRG) with different acquisition dates and large solar 
zenith angles over an alpine region in Sweden. The sample stratified by 
cosine of i produced c with the highest precision from repeated trials and 
had coefficients of determination (R2) twice as high as those from the other 
sampling methods. Use of power allocation in the cosine of i stratified 
sample enabled better representation of spectral variability; this was 
particularly important for the NIR band where the outcome of c differed 
according to sampling method. Evaluations using t-tests and classification 
accuracy showed that c derived from the cosine of i stratified sample 
correctly normalized a larger percentage of the evaluation data. The 
distribution of cosine of i in the study area, the spectral variability and 
vegetation types exert influences to consider when sampling to derive c. 
Although sampling was restricted to alpine vegetation only, some 
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vegetation classes may have benefitted from separate c-parameter 
calculation. In general, dry alpine heath and alpine grass heath had 
relatively higher c-parameters, mesic alpine heath was slightly lower, and 
alpine willow and alpine meadow had lower c-parameters for the near-
infrared band. The cosine of i stratified sampling method using power 
allocation may be useful for calculation of c for vegetation conditions other 
than those presented here, as well as for other empirical parameters (e.g., 
Minnaert k). 
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1  Introduction 

1.1 Background 

 
The radiance recorded by a satellite sensor is affected by several factors, 
including topography, solar illumination angles, atmosphere, and vegetation 
characteristics. Topographic characteristics of the landscape, such as slope and 
aspect, in combination with the solar zenith and azimuth angles, result in 
illumination differences apparent within a satellite image. Topographic 
normalization methods adjust the spectral radiance in an image so that a 
vegetation class will have similar spectral values whether facing away from or 
towards the sun (Holben and Justice 1980). There are several categories of 
topographic normalization methods, such as photometric/photometric-
empirical, statistical-empirical, sun-canopy-sensor, and physically based 
models (Soenen et al. 2008). The photometric-empirical category includes the 
“semi-empirical” methods, which consist of a photometric function modified 
by an empirical parameter. Examples of semi-empirical methods are the 
Minnaert correction (Smith et al. 1980) and C-correction (Teillet et al. 1982), 
which use the empirical parameters k and c, respectively. These empirical 
parameters are derived differently, yet both are based on the relationship 
between the image’s spectral data and the topographic and illumination 
characteristics, and are determined from a sample of these data.  

Despite numerous topographic normalization studies, details or guidelines 
about the sample used to calculate the empirical parameters have seldom been 
provided. The aim of this study was to examine the resulting empirical 
parameter as a function of the sample from which it was derived. In the 
literature, one of the few recommendations regarding an empirical parameter’s 
sample can be found in Civco (1989) who stratified a sample by aspect with 
“large samples of an equal number of pixels (n = 1,390) falling on northern and 
southern slopes”. In general, two categories of sampling methods for 
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calculating semi-empirical parameters can be distinguished in the literature: 1) 
selection (often subjective) of a relatively small number of observations 
(generally n < 100) for a target vegetation type over a range of topographic 
conditions (e.g., Blesius and Weirich 2005; Ekstrand 1996; Smith et al. 1980), 
or 2) random sampling of a varying quantity of observations from either a 
subset or an entire image. For example, Teillet et al. (1982) sampled n = 1,265 
and n = 1,038 in two Landsat images to calculate c over five forest types; 
Colby (1991) sampled all pixels and a subset from a forested Landsat Thematic 
Mapper (TM) image to calculate global and local k; and, Bishop and Colby 
(2002) compared k calculated globally, locally and specifically for three broad 
land-cover types using SPOT 3 images. The work described in the present 
study focused on use of random sampling, the second of the two methods 
mentioned, to collect the sample used to determine c.  

Many topographic normalization studies have the objective of comparing 
methods or modifying them to improve their performance. While different 
semi-empirical methods have been found to have similar results (Meyer et al. 
1993; Richter et al. 2009), there have been general problems such as over-
correction of extreme slopes (Riaño et al., 2003), low correlation between 
spectral data and illumination angles (Bishop and Colby 2002; Carpenter et al. 
1999), and unsatisfactory corrections. Among the modifications are slope-
specific corrections (Ekstrand 1996; Nichol et al. 2006), slope-smoothing 
(Kobayashi and Sanga-Ngoie 2009), and use of different models for the visible 
versus infrared bands (Richter et al. 2009; Vincini and Frazzi 2003). Some 
studies have touched upon problems with the empirical parameter, such as 
Ekstrand (1996) who found an increased k was needed for better correction of 
the near-infrared (NIR) band, Civco (1989) who found difficulties in 
normalizing the NIR band in particular, and Gu and Gillespie (1998) who 
found c-parameters to be so large in general that they “lack an exact physical 
explanation”. One development of methods has been to apply separate 
topographic normalizations specific to the vegetation type. This is based on the 
idea that non-Lambertian reflectance varies in degree with surface roughness 
and therefore by vegetation characteristics (Holben and Justice 1980; Teillet et 
al. 1982). Gu and Gillespie (1998) suggested separate corrections for forest and 
non-forest, using a sun-canopy-sensor model for forest and C-correction for 
non-forest. Bishop and Colby (2002) derived individual empirical parameters 
for three broad land cover classes, namely vegetation, non-vegetation and 
snow. Other researchers have derived empirical parameters for specific classes, 
such as coniferous forest species (Teillet et al. 1982) or separate normalizations 
for forests with differing canopy complexity (Kane et al. 2008). Bishop and 
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Colby (2002) and Soenen et al. (2008) concluded that more study was needed 
regarding vegetation-specific topographic normalization.  

The present study focused on alpine vegetation, which has different 
reflectance characteristics than forests, for which the majority of topographic 
normalization studies have been conducted. The geotropic growth of trees and 
resulting canopy self-shadow within forests influences the observed radiance, 
especially on sloping terrain (Gu and Gillespie 1998). Although alpine 
vegetation is shorter in stature, the reflectance behavior can also be complex 
and non-Lambertian (Hugli and Frei 1983; Vierling et al. 1997). In general, the 
radiance within a pixel can be influenced by the mixture of background 
reflectance (e.g., soil), non-photosynthetic vegetation, green vegetation, and 
shadow (Roberts et al. 1993). Studies of alpine vegetation have found that the 
amount of green live foliar phytomass has a strong influence on NDVI (Riedel 
et al. 2005; Stow et al. 1993). Additionally, there is a strong correlation 
between alpine vegetation classes, topographic conditions and NIR (and 
NDVI) reflectance (Deng et al. 2007). The Swedish alpine area is covered by a 
mosaic of vegetation types (e.g., willow, dwarf shrubs, grasses, forbs) varying 
in density, shape and height (from < 1 cm to 2 m, by definition). Given the 
vegetation dependence of topographic normalization, the effect of this 
heterogeneous mixture of alpine vegetation on the derivation of an appropriate 
empirical parameter for topographic normalization must be considered.  

The objective of this study was to examine the precision and accuracy of 
the empirical parameter as a function of the sample from which it was derived. 
The sampling method and the quantity of sample observations (determined 
using sampling theory) were hypothesized to be of importance to the resulting 
empirical parameter. Three sampling methods for calculating the empirical 
parameter were tested: a random sample; a stratified random sample with 
stratification on north and south aspects; and, a stratified random sample with 
stratification by the cosine of the solar incidence angle, i. For the sample 
stratified by cosine of i, an optimal allocation method called power allocation 
(Bankier 1988) was used to determine the quantity of observations for each 
stratum. The work was carried out in an alpine area at a high northern latitude 
in Sweden (66º 00' N, 15º 30' E) where solar zenith angles may be large. Four 
overlapping satellite images (two Landsat 5 TM and two SPOT 5 HRG) were 
used, each with different acquisition dates and varying illumination conditions. 
In this study, we have concentrated on use of the semi-empirical C-correction 
topographic normalization method, a description of which follows.  
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1.2 The C-correction 

 
The C-correction consists of a modified cosine correction plus the empirical 
parameter c (Teillet et al. 1982), which is derived from the linear relationship 
between the spectral data and the cosine of the solar incidence angle, i, with 
respect to surface normal. Cosine of i (cosi) is calculated as a function of the 
local terrain slope and aspect, and the solar illumination angles upon the 
surface at the time of satellite data acquisition (Table 1, Eq. 1). Linear 
regression is used to estimate intercept (b) and gradient (m), using cosi as the 
independent variable and reflectance ( t̂ ) as the dependent variable (Eq. 2). 
The c-parameter is calculated as b divided by m (Eq. 3) for each wavelength 
band since the relationship between reflectance and cosi is wavelength 
dependent (Teillet et al. 1982). The c-parameter is added to the numerator and 
denominator of the cosine correction to form the C-correction equation (Eq. 4). 
Teillet et al. (1982) state that c emulates the effect of path radiance, but that the 
analogy is not exact. The angles described in Table 1 are depicted in Figure 1. 
 
Table 1 
Symbols and their definitions (a) used in the equations (b) for C-correction (Teillet 
et al. 1982). 
a) Symbols and definitions 
i = solar incidence angle with respect to surface normal 
z  = solar zenith angle 
s = terrain slope angle 
a = solar azimuth angle 
a' = terrain aspect angle 

t̂  = topographically influenced (t) reflectance of band λ 
b = intercept of linear regression 
m = gradient of linear regression 
cλ = c-parameter for band λ 

ĥ  = topographically normalized (h) reflectance of band λ 

b) Equations 
Cosine of i (cos i) 
 
Linear regression 
between reflect-
ance and cos i 
 
c-parameter 
 
C-correction 
 

cos i = cos z * cos s + sin z * sin s * cos (a - a')      (1)   
 

t̂  = b + m * cos i                                               (2)  

                                                                          

cλ = 
m

b

                                                                  (3)   

ĥ  = t̂



ci

cz




cos

cos

                                        (4)   
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Fig. 1. Illustration of topographic and solar illumination angles, including solar 
azimuth (a), terrain aspect (a'), solar zenith (z), terrain slope (s), and solar 
incidence with respect to surface normal (i). 
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2 Materials  

 

2.1 Study Area 

 
The 110 x 110 km study area was in a mountainous region of northern Sweden 
(Fig. 2) with elevations ranging from 295 to 1768 m. The geology of the area is 
highly varied bedrock, including schist, gneiss, phyllite, and amphibolites. The 
mean annual temperature here is -1ºC, the mean July temperature of +11ºC, 
and there is between 800 to 1200 mm precipitation annually. These factors and 
others give rise to a varied alpine vegetation, consisting of a mosaic of several 
species of dwarf shrubs, willow, other shrubs, low-growing heath vegetation, 
forbs, grasses, and numerous mosses and lichens. The alpine vegetation classes 
used in this study are given in Table 2. The class definitions follow Rafstedt 
(1983), classified by vegetation height and composition, and with occurrence 
strongly related to topographic influences such as altitude, slope and moisture 
regime. Sub-alpine birch (Betula pubescens ssp. czerepanovii) trees are defined 
as being 2 to 5 m in height, and form the tree limit at around 600 to 800 m 
elevation, while coniferous forest (primarily Picea abies) generally reaches up 
to 500 to 600 m elevation.  
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Fig. 2.  Study area in Sweden (left) with Västerbotten province in darker grey. 
Enlargement (right) showing the two overlapping Landsat TM images from 2006 
and 2005, the SPOT 2008 two-image mosaic (gray), the SPOT 2004 two-image 
mosaic (white), and aerial photography sampling units (small black squares).  
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Table 2 Classes, definitions and vegetation height of the alpine vegetation classes in the 
evaluation dataset. The number of plots in the evaluation dataset for each class is given, as 
well as the mean elevation above sea level. The class assigned to the plot has 70% or greater 
area coverage within the plot (10m radius). Plots with < 70% area coverage of a single class 
were not included in the evaluation dataset. 
 
Class name Definition Vegetation 

height  
(dm) 

Elev.  
mean  
(m) 

Nr.  
Plots 

Grass 
heath 

Low-growing grasses on poor soil, where > 
10% of plot area is grass or half-grass. 
Often three-leaved rush (Juncus trifidus), 
stiff sedge (Carex bigelowii), sheep’s-
fescue (Festuca ovina), alpine hair-grass 
(Deschampsia alpina.), sweet vernal-grass 
(Anthoxanthum odoratum), mat-grass 
(Nardus stricta), etc. Most often in middle 
alpine region.  
 

< 4 1003 
 

114 

Extremelydry  
heath 

Extreme exposure to wind, often bare of 
snow during winter, with sparse, low-
growing vegetation. Often crowberry 
(Empetrum hermaphroditum), mountain 
bearberry (Arctostaphylos alpinus), trailing 
azalea (Loiseleuria procumbens), diapensia 
(Diapensia lapponica), and lichens. In 
middle to low alpine region. 
 

< 1 926 28 

Dry heath 
 

Low-growing shrubs dominate over grasses 
or forbs. Often crowberry (Empetrum 
hermaphroditum) and dwarf birch (Betula 
nana). In low alpine region. 
 

< 3 878  
 

118 

Short  
alpine  
meadow 

Forbs and grasses dominate over shrubs. 
Often meadow buttercup (Ranunculus 
acris), alpine lady’s mantle (Alchemilla 
alpine), mountain violet (Viola biflora), 
sweet vernal-grass (Anthoxanthum 
odoratum), alpine’s cat-tail (Phleum 
alpinum), etc. In low alpine region. 
 

< 5 857 
 

118 

Alpine willow Different species of willow (Salix 
lapponum, Salix glauca, Salix lanata, and 
other Salix spp.) with at least 25% willow 
coverage of plot area.  In low alpine region.

5– 20  802 
 

143 

Mesic 
heath 

Shrubs dominate over grasses or forbs. 
Often blueberry (Vaccinium myrtillus), 
dwarf birch (Betula nana), blue heath 
(Phyllodoce caerulea), willow (Salix spp.), 
juniper (Juniperus communis). In low 
alpine region. 
 

3– 10 799 
 

158 

Tall 
alpine  
meadow 

Forbs and grasses dominate over shrubs. 
Globeflower (Trollius europaeus), alpine 
blue-sow-thistle (Cicerbita alpina), cow-
parsley (Anthriscus sylvestris), monk’s-
hood (Aconitum napellus), ferns, etc. In 
low alpine region.  

5– 20 770 
 

14 
 
 
 
 

693 
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2.2 Satellite images 

Four sets of satellite data acquisitions were used in this study: two Landsat 5 
TM images from 2006 and 2005, and two SPOT 5 High Resolution Geometric 
(HRG) XS image mosaics from 2008 and 2004 (Table 3). The Landsat 5 TM 
data had a spatial resolution of 25 m and TM bands 1-5 and 7 were used. The 
SPOT 5 HRG data had a spatial resolution of 10 m and XS bands 1-4 were 
used. Each SPOT 5 mosaic consisted of two contiguous images acquired in the 
same satellite pass by the HRG-1 sensor. By using images acquired with 
different solar zenith and azimuth angles we aimed to test the calculation of c 
for varying illumination conditions. In this study, the SPOT 5 images had large 
positive view angles (i.e., sensor viewing eastward). The Landsat 2006 image 
was cloud free, while the Landsat 2005 and SPOT 2008 images had some 
clouds (<10%), and the SPOT 2004 image had jet contrails on the western 
edge. The images were registered to the Swedish RT90 coordinate system, with 
less than one-half pixel root mean square error (RMSE) and good co-
registration between all images. All images were from the summer vegetation 
period but from different years, with potential differences in phenology or soil 
moisture conditions, although such influences were not noticeable in the 
images used. Terra/Aqua MODIS Nadir-/BRDF-adjusted reflectance 16-day 
composites corresponding to the same date of the Landsat or SPOT images 
were acquired for the purpose of reflectance normalization. 
 
Table 3  
Characteristics of the satellite images used in the study. 
Sensor  Acquisi-

tion  

Date 

Path/Row Spatial  

Resolu-
tion 

Local 
Time 
GMT+1 

Solar  

azimuth  

angle 

Solar 
zenith 
angle 

Sensor  

viewing  

angle 

Landsat 5 
TM 

2006 Aug 
19 

197/014 25 m 11.16 167º 53º Nadir 

Landsat 5 
TM 

2005 July 
31 

197/014 25 m 10.57 163º 49º Nadir 

SPOT 5 
HRG-1 

2008 Aug 
24 

042/214-0 & 
042/213-0 

10 m 12.19 186º 55º +26.8º 

SPOT 5 
HRG-1 

2004 July 
29 

046/213-0 & 
046/213-8 

10 m 12.27 189º 47º +26.7º 
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2.3 Digital Map Data  

Digital map data used included the Swedish National Mapping Agency’s 
Digital Elevation Model (DEM), the “Road Map,” and the “GSD-Land and 
Vegetation Cover” map. The 50m resolution DEM, made from manual stereo 
interpretation of aerial photos, was the best full coverage DEM available for 
the study area. The Road Map contains land cover data at 1:100,000 scale with 
broad classes such as alpine vegetation, sub-alpine forest, non-alpine forest, 
open land (non-alpine), urban, water, wetland, and glaciers. The Road Map’s 
“alpine vegetation” class could, in reality, contain bare rock, dry alpine heath, 
mesic alpine heath, alpine grass heath, alpine meadow, alpine willow, snow, 
and snow bed vegetation. The GSD-Land and Vegetation Cover map is derived 
from a classification of Landsat data and has more detailed vegetation classes 
than the Road Map. In the alpine region, the thematic classes are grass heath, 
other heath (i.e., dry/mesic heath), thickets (i.e., willow), alpine meadow, and 
sparse vegetation (i.e., < 50% vegetation cover). 

2.4 Evaluation dataset 

The evaluation dataset was based on a nationwide, systematic two-stage 
sample from the “National Inventory of Landscapes in Sweden” (NILS) 
program (Ståhl et al. 2010). NILS’ primary sampling units are 5 x 5 km 
squares with 25 km distance between them in the mountain areas. The primary 
sampling unit is covered by three color-infrared aerial photographs at 1:30 000 
scale with 60% overlap using a Zeiss-Intergraph Digital Mapping Camera (Z/I 
DMC). We wanted to double the number of primary sampling units available 
for this study, and therefore acquired supplemental aerial photographs with 
12.5 km distance diagonal to the NILS primary units (Fig. 2). This resulted in 
32 primary sampling units total in the Landsat images, and 19 and 22, 
respectively in the SPOT 2004 and 2008 image mosaics. The secondary 
sampling unit was a 10 m radius photo-interpretation plot, of which there were 
110 plots systematically arranged (ten rows with 500 m between rows) within 
each 5 x 5 km primary sampling unit. The secondary sample plots were located 
at the center of the satellite image pixel, for both SPOT and Landsat. 
Vegetation classes and percent cover per class were determined for the center 
point and the entire 10 m radius plot via stereo interpretation using a digital 
photogrammetric workstation; a subset of plots were field-checked. In this 
study we concentrated on the seven classes listed in Table 2, omitting 
spectrally different classes such as snow/ice, water, wet heath, wetland, snow 
bed vegetation, and bare rock. Only plots with 70% or greater coverage of a 
single vegetation class within the plot were used with the intent of excluding 
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pixels with a highly mixed spectral signature. Upon reduction, the total number 
of secondary sampling units in the evaluation dataset was 693. The evaluation 
data were based on a systematic sample, and therefore provided a 
representation of class frequency that may differ from other sampling methods, 
for example, from an evaluation dataset stratified on a topographic parameter 
(e.g., elevation or cosi).  
 



14 

3 Methods 

 

3.1 Data pre-processing 

3.1.1 Reflectance normalization of the image data 

 
Performing topographic normalization on atmospherically corrected 
reflectance data is recommended (Shepherd and Dymond 2003; Teillet 1986). 
In this study, the Landsat and SPOT data were reflectance-normalized relative 
to Terra/Aqua MODIS Nadir-/BRDF-adjusted reflectance data from a 
corresponding acquisition date (Olthof et al. 2005; Reese et al. 2009; Roy et al. 
2008). The choice of sampling plots and method for reflectance normalization 
is important (Vicente-Serrano et al. 2008); we used linear regression with 
randomly sampled plots (n = 5,000). Pixels with water, wetlands, agriculture, 
urban areas, clouds, and snow/ice were masked and excluded from the 
reflectance normalization process. The Landsat and SPOT images were subset 
to match the MODIS pixel corner coordinates and block aggregated to a 500 m 
pixel. Band-wise linear regression of the Landsat or SPOT digital number 
(DN) and the corresponding MODIS reflectance was done according to Eq. 5,  
 

 ρλ modis = β0 + β1* DNλ  (5) 

 

where ρλ modis was the reflectance value for band λ of MODIS, and DNλ was the 
corresponding digital number for band λ of Landsat or SPOT. The resulting 
regression equation provided an intercept (β0) and gradient (β1), used to 
reflectance normalize the Landsat and SPOT images with Eq. 6, 
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 t̂ = β0 + β1* DNλ,  (6) 

where t̂  was the normalized reflectance for band λ of the Landsat or SPOT 
image (yet still influenced by topography, as indicated by subscript t).  

3.1.2 Stratifying the image to create the alpine vegetation subset  

The full Landsat and SPOT images contained several different classes (e.g., 
alpine vegetation, sub-alpine forest, non-alpine forest, water, wetland, urban, 
and agriculture) from which we focused on the alpine vegetation. Following 
the premise that topographic normalization is vegetation type dependent, the 
1:100 000 “Road Map” was used to mask each satellite image into four 
separate image subsets, namely alpine vegetation, sub-alpine forest, non-alpine 
forest, and other (water, wetland, urban, agriculture). All topographic 
normalization work described in this paper was carried out upon data from the 
alpine vegetation subset only. Bare rock and snow/ice occurred within the 
alpine vegetation subset, but have reflectance properties differing from 
vegetated surfaces (Giardino and Brivio 2003; Hugli and Frei 1983) and were 
therefore masked away from the alpine vegetation subset using a threshold of 
NDVI < 0.3.  

3.1.3 DEM-derived data  

Slope, aspect and cosi (Table 1, Eq. 1) were derived from the 50 m DEM. Cosi 
values generally range from -1 to 1, where negative values are completely 
shadowed slopes (e.g., vertical overhangs with no direct solar illumination), 
while positive values range from lower values sloping away from the sun to 
higher values sloping towards the sun. The cosi raster was interpolated from 50 
m into 10 m and 25 m resolution rasters (Fig. 3) using natural neighbor 
interpolation (Bater and Coops 2009; Sibson 1981). Comparison between the 
interpolated DEMs and field-measured GPS elevations (n = 360) showed that 
the original 50 m DEM had an RMSE of 9.0 m for elevation, while the 10 m 
interpolated DEM had an RMSE of 7.9 m for elevation. Within the alpine 
vegetation subset, cosi followed a normal distribution, namely N(0.583, 0.013), 
N(0.633, 0.011), N(0.562, 0.014), and N(0.660, 0.010), for the Landsat 2006 
and 2005 images and the SPOT 2008 and 2004 images, respectively. 
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Fig. 3. Cosine of i for a subset of SPOT 2008 to left (solar zenith = 55º, solar 
azimuth = 186º) and Landsat TM 2006 to right (solar zenith = 53º, solar azimuth = 
167º). For reference, satellite image subsets of the area shown here appear in Fig 6. 

3.2 Topographic normalization 

3.2.1 C-correction 

In this study, we topographically normalized the satellite data using the C-
correction, as described in Section 1.2. Additional modifications to compensate 
for radiation reflected from adjacent areas (Proy et al. 1989) or cast shadows 
(Giles 2001) were not incorporated. Determination of c was tested by using 
different sampling methods, a description of which follows. 

3.2.2 Sampling methods to determine the c-parameter 

We tested three strategies to sample the data for calculation of c:   
 
1. a random sample with a large number of observations, called the 

“random sample”;  
2. a stratified random sample where observations were stratified by aspect 

(north- and south-facing slopes), called the “aspect sample”; and,  
3. a stratified random sample where observations were stratified by cosine 

of i, called the “cosi sample.”  
 

All samples were drawn from the alpine vegetation image subset only. A broad 
definition of north (315°-360° and 0°-45°) and south aspects (135°-225°) was 
used for the aspect sample. For the cosi sample, the stratification was based on 
0.1 increments of positive cosi values, resulting in ten strata (e.g., 0.01-0.10, 
0.11-0.20…0.91-1.00).  
 

H

L

Cosi = 1 
 
 
 
 
Cosi = 0 
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3.2.3 Quantity of observations in the sample 

In topographic normalization studies, there is often mention of taking a “large” 
random sample with which to calculate the empirical parameter. The term 
“large,” however, is relative and can vary in quantity according to the 
particular study. Sampling theory can provide guidance regarding the number 
of observations needed to make an estimate with a designated precision. 
Thigpen (1987) suggested that when a sample is taken from a bi-variate normal 
distribution for the purpose of linear regression, three parameters can help 
determine sample size (n): 1) the correlation (r) between the two variables, 2) a 
specified acceptable relative error (δ) for estimating the slope of the regression, 
and 3) the Student’s t-statistic for a specified α-level. If the correlation (r) is 
known or can be determined by a sample of the data, and desired error (δ) and 
probability levels specified, n can be solved for using Eq. 7 (Thigpen, 1987). 
 

  



5.022

2/5.0 /1
)1(

rrt
n


    (7) 

When correlation between variables is relatively low (e.g., r = 0.3), with δ = 
0.05 and α = 0.05, Eq. 7 indicates that n = 16,200 is necessary, while for r = 
0.5, n = 4,600. In the present study, a sample of the spectral data within the 
alpine vegetation subset indicated that the correlation between cosi and the 
visible bands was around r = 0.3, but higher for the NIR and SWIR bands (r ≥ 
0.5). Therefore, for the “large” random sample, we chose an n = 16,500 sample 
for all bands. To study the effect of reducing the number of plots on calculating 
c, we also sampled with n = 5,000, and n = 1,600 since the sample size 
referred to in the literature as being “large” has often been n < 2,000. The total 
number of observations used for the aspect and cosi stratified samples was 
smaller (n = 5,000) than that for the largest random sample (n = 16,500), as the 
correlations were higher.  

3.2.4 Observation allocation (including power allocation) in the stratified 
random samples 

For the sample stratified by aspect, the random observations within the north 
and south aspects had equal allocation (n = 2,500 for each stratum). For the 
cosi sample, we used a “power allocation” (Bankier 1988; Lehtonen and 
Pahkinen 2004), which is a modified form of optimal allocation, to determine 
the number of observations per stratum. Power allocation allows small but 
important strata to be given weight, and incorporates descriptive statistics (e.g., 
standard deviation or coefficient of variation) about the variable of interest. 
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The power allocation used here was based on Bankier’s (1988) power 
allocation (Eq. 8), for a dataset with a total of h = 1…L strata, and a given total 
sample size, n.   
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            (8) 

The power allocation in Eq. 8 provides a solution for a minimum sample size 
(nh) for stratum h, where Nh is the stratum population size (i.e., total number of 
pixels in stratum h), and CVhy is the coefficient of variation (CV = σ / μ) of the 
variable of interest, y (e.g., the reflectance), within stratum h. The coefficient q 
refers to the desired power, where 1≥q≥0, and is assigned by the user. 
Solutions of q = 0.3 or 0.5 are often used (Lehtonen and Pahkinen 2004). 
When q = 1, the result is similar to a Neyman allocation, which is a function of 
stratum size (Lehtonen and Pahkinen 2004; Neyman 1934), while if q = 0, 
stratum size is effectively not considered. A value of q between 0 and 1 is a 
compromise between these allocations (Bankier 1988). In this study, we used q 
= 0.3 for all cosi strata for the visible bands, while for the NIR and SWIR 
bands, we have suggested a different assignment of q. In particular, this 
appeared to be important for the NIR band, which exhibited a large standard 
deviation and CV for the spectral values in the higher cosi strata, and had 
potentially very low spectral values occurring within the low cosi stratum. For 
this reason, a larger q (q = 0.4) was used for the NIR and SWIR bands in the 
highest cosi stratum (cosi > 0.9), and a lower q (q = 0.2) in the lowest cosi 
stratum (0 < cosi < 0.1). Strata adjacent to these had a 0.05 increment to reach 
to q = 0.3, which was used for all other strata (as shown by example in Table 
4).  
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Table 4  
An example from the Landsat TM 2006 image (alpine vegetation subset only). Mean, standard deviation and total number pixels for the 
red, NIR and SWIR1 bands for each cosine of i stratum. For the cosi sample (n = 5,000) with power allocation (Eq. 8), the table shows q 
as used in power allocation for visible and IR bands, and the resulting sample size per cosi stratum (nh) for red, NIR and SWIR1.  
  

Cosi 
stratum 

μ 
Red 

Reflect 

μ 
NIR 

Reflect 

μ  
SWIR 
Reflect 

σ 
Red 

Reflect 

σ 
NIR 

Reflect 

σ  
SWIR 
Reflect 

Total 
pixels 
(Nh) 

q 
Vis 

q 
IR 

nh 
Red 

nh 
NIR 

nh  
SWIR1 

.9-1.0 0.088 0.322 0.326 0.024 0.075 0.042 49862 0.3 0.4 252 845 517 

.8-.9 0.077 0.323 0.303 0.022 0.069 0.041 279664 0.3  0 .35 433 718 516 

.7-.8 0.068 0.309 0.276 0.018 0.056 0.039 1218092 0.3 0.3 637 581 510 

.6-.7 0.060 0.282 0.242 0.015 0.044 0.038 4333359 0.3 0.3 866 714 814 

.5-.6 0.055 0.262 0.218 0.013 0.037 0.033 4455306 0.3 0.3 829 671 791 

.4-.5 0.052 0.243 0.199 0.013 0.036 0.025 1503108 0.3 0.3 632 502 477 

.3-.4 0.045 0.223 0.170 0.011 0.032 0.030 354177 0.3 0.3 410 319 437 

.2-.3 0.036 0.195 0.135 0.011 0.041 0.036 91097 0.3 0.3 324 305 444 

.1-.2 0.026 0.140 0.086 0.010 0.047 0.037 34812 0.3   0.25 336 239 350 
< .1 0.019 0.104 0.056 0.007 0.026 0.019 26986 0.3 0.2 276 101 139 
 
Total 

 
0.058 

 
0.271 

 
0.230 

 
0.016 

 
0.049 

 
0.046 

 
12346493 

 
-- 

 
-- 

 
5000 

 
5000 

 
5000 
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3.2.5 Thresholding complete shadow from the sample 

There may be observations in the sample where extremely low reflectance 
values occur in low cosi areas (e.g., 0<cosi < 0.2), potentially resulting in a 
sample with a non-linear relationship (e.g., Fig. 4). These may be pixels with 
no reflectance, located in complete shadow, and erroneously labeled with 
positive cosi values. This may occur in images with large solar zenith angles, 
next to steep anti-solar-facing slopes with negative cosi values, or may be due 
to the limited resolution or accuracy of the DEM (Conese et al. 1993). To 
remove these from the sample, observations with true negative cosi were used 
to determine a minimum threshold for identifying completely shadowed 
observations (Fig. 4). The NIR band was used to determine the threshold value, 
however, observations were thresholded from the samples for all wavelength 
bands. These observations were checked manually to confirm that they 
represented complete shadow, and the threshold was applied conservatively so 
as not to eliminate valid observations within low cosi strata.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.  Cosi sample from Landsat TM 2006 image, containing observations in complete 

shadow (cosine of i < 0). The dashed box indicates observations below the NIR threshold to 

be removed.  
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3.3 Assessment  

3.3.1 Assessing precision of the c-parameter 

To assess the repeatability (i.e., precision) of calculating c, five separate 
samples were extracted for each random, aspect and cosi sampling method. 
The mean and standard deviation of the c-parameters resulting from the five 
trials were calculated for each sampling method and spectral band. If the 
standard deviation of c from the five samples using a single sampling method 
was large (i.e., the five c were widely different), that sampling method had a 
strong possibility of deriving inconsistent and potentially less reliable c. 

3.3.2 Assessing accuracy of the c-parameter 

There is no single standard method used to assess the success of a topographic 
normalization, and a combination of assessments is often recommended (Riaño 
et al. 2003), but the methods are not agreed upon (e.g., Bishop and Colby 
2002). In this study we have used a combination of visual assessment, 
classification accuracy and two-sample independent t-tests to determine the 
effectiveness of reducing spectral variation due to topography. Visual 
assessment of the images before and after topographic normalization often 
gives an indication of the normalization’s effect, but is subjective, and further 
quantitative methods should be used. One such method is to compare 
classification accuracies from pre- and post-topographically normalized 
images. In this study, the normalized images were classified with a maximum-
likelihood algorithm using all wavelength bands, as removing any band gave 
lower classification accuracy. The independent evaluation dataset described in 
Section 2.4 was used to assess the classification accuracy. As an additional 
comparison, we assessed the effect on classification accuracy when applying a 
large range of c-parameters (c = 0.1, 0.2, 0.3…2.0) to each band. Another 
quantitative evaluation method is to observe the effect that normalization has 
on reducing the spectral variation over the full range of cosi (Civco 1989; 
Riaño et al. 2003). Using the evaluation dataset, two-sample independent t-
tests were conducted to compare mean spectral values for low and high cosi 
groups (i.e., horizontal cosi + 0.15 separated the two groups) for the individual 
alpine vegetation classes in Table 2. The t-tests were performed using an 
incremental range of c (c = 0.1, 0.2, 0.3…2.0) for each spectral band. The 
motivation for using the t-test was that it would be less sensitive to outliers in 
the sample than the more commonly used standard deviation (e.g., Riaño et al. 
2003). Using a 95% confidence interval, the null hypothesis was that the 
normalized spectral mean values from the low and high cosi groups were equal 
to each other. The conditions indicating the least likelihood of rejecting the null 
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hypothesis that the groups were similar (i.e., when the t-value was large and p-
value was low), indicated the c-parameter that best normalized the data for that 
vegetation class. Scatter plots for each alpine vegetation class were also useful 
for visualizing the effect of different c in the normalization. 
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4 Results 

4.1 Precision of the c-parameter 

The mean value of c and standard deviation resulting from the five sample 
trials are reported for each sampling method and image (Table 5). Of the 
different sampling methods, the cosi sample gave c-parameters with the highest 
precision (i.e., lowest standard deviation from the five trials), for all images 
and most bands. The random sample with n = 16,500 and the aspect sample 
also provided reasonably precise c-parameters, although the standard 
deviations were slightly higher (with a few exceptions) than those from the 
cosi sample. As was expected, the random samples with different n showed 
that as sample size decreased, the precision of c also decreased, with the lowest 
precision (highest standard deviation) from the n = 1,600 random sample. The 
cosi sample produced a larger value of c for the NIR band as compared to the 
other sampling methods, in particular for the SPOT 2008 and Landsat 2006 
images (Table 5). For other wavelength bands, the cosi sample produced a 
slightly lower c for the visible and SWIR2 (TM band 7) bands, while for the 
SWIR1 band (TM band 5 and SPOT band 4) c was often similar between 
sampling methods. The mean coefficients of determination (R2) from the linear 
regressions between cosi and the spectral data were much higher from the cosi 
sample (often at least double) than the other sampling methods, for all bands 
and all images (Table 6). Scatter plots of the distribution of spectral values 
across cosi from the different sampling methods are shown in Fig. 5, using the 
SPOT 2008 data as an example. 
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Table 5  The mean c-parameter and the standard deviation of c from five repeated trials for each sampling method. The lowest standard 
deviation (i.e., highest precision) is shown in bold. Random refers to the random sampling method, Aspect refers to the north-south 
aspect stratified sample, and Cosi refers to the cosine of i stratified sample with power allocation. 
Image and sample Mean c-parameter Standard deviation  

TM 2006 Blue Green Red NIR SWIR
1 

SWIR
2 

Blue Green Red NIR SWIR
1 

SWIR
2 

Random n=16,500 0.882 0.880 0.452 0.517 0.240 0.138 0.019 0.018 0.015 0.015 0.006 0.006 
Random n = 5,000 0.900 0.881 0.461 0.515 0.241 0.147 0.061 0.036 0.027 0.029 0.015 0.026 
Random n = 1,600 0.787 0.817 0.399 0.516 0.215 0.111 0.086 0.059 0.033 0.042 0.023 0.024 
Aspect   n = 5,000 0.770 0.801 0.395 0.502 0.236 0.126 0.024 0.033 0.008 0.012 0.008 0.008 
Cosi       n = 5,000 0.709 0.773 0.357 0.729 0.240 0.079 0.009 0.010 0.014 0.010 0.003 0.005 
TM 2005             

Random n=16,500 1.594 0.988 0.705 0.431 0.470 0.510 0.116 0.010 0.029 0.022 0.002 0.028 
Random n = 5,000 1.710 1.020 0.741 0.421 0.491 0.572 0.280 0.064 0.058 0.015 0.015 0.030 
Random n = 1,600 1.908 1.093 0.827 0.443 0.505 0.604 0.564 0.112 0.182 0.104 0.046 0.178 
Aspect   n = 5,000 1.347 0.889 0.615 0.456 0.438 0.440 0.145 0.055 0.050 0.008 0.028 0.045 
Cosi       n = 5,000 1.377 0.832 0.493 0.468 0.370 0.314 0.035 0.016 0.006 0.007 0.009 0.011 
SPOT 2008              
Random n=16,500 -- 0.747 0.361 0.252 0.299 -- -- 0.028 0.020 0.007 0.011 -- 
Random n = 5,000 -- 0.726 0.334 0.267 0.289 -- -- 0.024 0.011 0.035 0.010 --
Random n = 1,600 -- 0.746 0.351 0.270 0.306 -- -- 0.055 0.024 0.007 0.014 --
Aspect   n = 5,000 -- 0.693 0.340 0.254 0.290 -- -- 0.015 0.004 0.013 0.016 --
Cosi       n = 5,000 -- 0.687 0.319 0.421 0.314 -- -- 0.013 0.005 0.003 0.003 --
SPOT 2004             
Random n=16,500 -- 1.633 0.936 0.629 0.522 -- -- 0.039 0.029 0.033 0.015 --
Random n = 5,000 -- 1.725 0.999 0.618 0.537 -- -- 0.119 0.093 0.049 0.029 --
Random n = 1,600 -- 1.694 0.992 0.646 0.545 -- -- 0.305 0.276 0.053 0.101 --
Aspect   n = 5,000 -- 2.285 1.925 0.531 0.788 -- -- 0.170 0.226 0.038 0.029 --
Cosi       n = 5,000 -- 1.414 0.798 0.644 0.437 -- -- 0.011 0.023 0.020 0.012 --
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Table 6 
The mean coefficient of determination (R2) from the linear regression between cosi 
and each spectral band, from five repeated trials for each sampling method and 
image. The slope and gradient of the linear regression are used to calculate c 
(Table 1). The highest R2

 are shown in bold. Random refers to the random 
sampling method, Aspect refers to the north-south aspect stratified sample, and 
Cosi refers to the cosine of i stratified sample with power allocation. 

 
Image and Sample R2 of linear regression between cosi and  
TM 2006 Blue Green Red NIR Swir

1 
Swir

2 
Random n=16,500 0.116 0.289 0.201 0.314 0.445 0.218 
Random n = 5,000 0.116 0.293 0.204 0.315 0.452 0.220 
Random n = 1,600 0.133 0.313 0.222 0.322 0.470 0.240 
Aspect   n = 5,000 0.137 0.318 0.231 0.335 0.499 0.249 
Cosi       n = 5,000 0.388 0.648 0.557 0.498 0.797 0.587 
TM 2005       
Random n =16,500 0.027 0.145 0.083 0.344 0.338 0.123 
Random n = 5,000 0.027 0.146 0.082 0.354 0.337 0.116 
Random n = 1,600 0.024 0.145 0.075 0.348 0.324 0.109 
Aspect   n = 5,000 0.040 0.181 0.109 0.368 0.393 0.159 
Cosi       n = 5,000 0.122 0.481 0.387 0.561 0.754 0.464 
SPOT 2008       
Random n =16,500 -- 0.323 0.281 0.401 0.512 -- 
Random n = 5,000 -- 0.333 0.293 0.396 0.513 -- 
Random n = 1,600 -- 0.336 0.290 0.399 0.517 -- 
Aspect   n = 5,000 -- 0.364 0.317 0.400 0.561 -- 
Cosi       n = 5,000 -- 0.634 0.604 0.506 0.781 -- 
SPOT 2004       
Random n =16,500 -- 0.114 0.089 0.241 0.262 -- 
Random n = 5,000 -- 0.107 0.082 0.242 0.258 -- 
Random n = 1,600 -- 0.116 0.091 0.253 0.264 -- 
Aspect   n = 5,000 -- 0.084 0.040 0.305 0.201 -- 
Cosi       n = 5,000 -- 0.419 0.378 0.515 0.708 -- 
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Fig. 5. Scatterplots of spectral reflectance (y-axis) versus cosine of i (x-axis) for 
four samples taken from the SPOT 2008 image. Columns are the red, near-infrared, 
and short-wave infrared bands. Different samples are given in the rows, with 
random sample (n=16,500) in first row, random sample (n=1,600) in second row, 
aspect sample (n=5,000) in third row, and cosi sample (n=5,000) in fourth row. 
The line represents the regression line from which c is calculated (Eq. 3). 
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4.2 Accuracy of the c-parameter 

The effect of topographic normalization using the c-parameters as determined 
by each sampling method was assessed using visual comparison, classification 
accuracy and t-tests. The results presented here are from the random sample (n 
= 16,500) and the cosi sample only, as the n = 16,500 random sample had c-
parameters similar to the aspect sample, and produced c-parameters second 
best in precision to the cosi sample. Visually comparing the images normalized 
using c-parameters from the cosi sample and the random sample (n = 16,500) 
did not reveal large differences (Fig. 6), despite the difference in c-parameters. 
Over-correction of extreme slopes was not seen, and both normalized images 
appeared reasonable. Using a more quantitative evaluation method, 
classification accuracy for pre- and post-topographic normalization was 
assessed. For all four satellite images, slightly higher classification accuracies 
were obtained when the c-parameters derived from the cosi sample were used 
(Table 7). The resulting c-parameters differed most for the NIR band, and we 
therefore present results regarding the normalizing effect and accuracy of the c-
parameters determined for the NIR band. Figure 7 shows the effect on 
classification accuracy when an incremental range of c was used to correct the 
NIR band, while the other bands’ c-parameters were those derived by each 
respective sampling method and remained unchanged. The larger NIR c-
parameter determined from the cosi sample resulted in higher classification 
accuracy. Figure 7 also shows that very low NIR c-parameters resulted in a 
classification accuracy result that was lower than if no topographic correction 
were performed at all; the very low c tended to overcorrect the spectral data.  
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Fig. 6.  Image subsets from SPOT 2008 (left column) and Landsat TM 2006 (right 
column). The first row is without topographic correction, the second row is C-
correction using c-parameters from random sample (n =16,500), and the third row 
is C-correction using c-parameters from cosi sample. Displayed bands: NIR, Red, 
Green (RGB).  
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Table 7    
Classification accuracy for alpine vegetation types (listed in Table 2) with no 
topographic correction, using C-correction with c derived from the random sample 
(n = 16,500), and from the cosi sample (n = 5,000). Accuracy was assessed using 
the evaluation dataset (n = 693). All image bands were used in the classification. 
(Note: While the accuracies presented are low, classification methods for such 
detailed alpine vegetation classes often involve refinement of training data and use 
of ancillary data from a DEM to increase final map accuracy, which was not done 
for results presented here.) 

 
 
 
 
 
 
 
 
 

 
 

 

Fig. 7. The effect of increasing the NIR band’s c-parameter on classification 
accuracy (all bands used), as assessed using the evaluation dataset (n = 693). The 
dark squares are from the SPOT 2008 image, the hollow diamonds are from the 
Landsat TM 2006 image. The classification accuracy and c-parameter as 
determined by the cosi sample is indicated by X, whereas O indicates the n = 
16,500 random sample, and I indicates the classification accuracy if no topographic 
correction were to be performed. Landsat 2005 and SPOT 2004 images closely 
followed the curve for Landsat 2006, obscuring the results, and therefore are not 
presented here.  
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 No  
topographic 
correction 

C-correction 
random sample 

(n = 16,500) 

C-correction 
cosi sample 
(n = 5,000) 

Landsat 2006 47.4% 49.8% 50.5% 
Landsat 2005 46.9% 49.0% 49.2% 
SPOT 2008 51.4% 52.2% 53.3% 
SPOT 2004 48.3% 49.6% 50.4% 
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The two-sample independent t-tests (Table 8) indicated that optimal c-
parameters differed among the individual alpine vegetation classes, with some 
general patterns seen among the four images (with exceptions). For the NIR 
band, dry alpine heath and alpine grass heath tended to have relatively higher 
c-parameters, mesic alpine heath was slightly lower, and alpine willow had 
relatively lower c-parameters, as did the alpine meadow classes. For these 
individual vegetation classes, the effect of normalizing the NIR band using c 
derived by the n = 16,500 random sample and the cosi sample is shown in 
scatter plots (Fig. 8).  
 
Table 8  The optimal c-parameter for the NIR band as determined by the two-
sample independent t-test for individual alpine vegetation classes are shown. Using 
the evaluation dataset (Table 2), the t-test compared the normalized mean spectral 
values between groups of low and high cosine of i (groups formed by horizontal 
cosi + 0.15), for each individual vegetation class. Tall alpine meadow and 
extremely dry alpine heath are not presented, because sufficient low cosi 
observations were lacking. The overall NIR c-parameter (based on all alpine 
vegetation types) from the random sample (n = 16,500) and the cosi sample for 
each image are also shown. 

 
 
  

 Alpine 

dry 

heath 

NIR c 

Alpine 
grass 
heath 

NIR c 

Alpine 
mesic 
heath 

NIR c 

Alpine 
short 
meadow 

NIR c 

Alpine 

willow 

 

NIR c 

Random 
sample 
n=16,500  
NIR c 

Cosi 

sample  

n=5,000 
NIR c 

Landsat 2006 0.7 0.7 0.7 0.3 0.4 0.517 0.729 

Landsat 2005 1.2 0.8 0.7 0.2 0.3 0.431 0.468 

SPOT 2008 0.6 0.7 0.5 0.4 0.4 0.252 0.421 

SPOT 2004 1.0 1.3 0.8 0.8 0.5 0.629 0.644 
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Fig 8. Scatterplots using the evaluation dataset of NIR reflectance (y-axis) versus 
cosine of i (x-axis) for individual alpine vegetation classes (in rows) from the 
Landsat TM 2006 image. Data without topographic correction (left column), C-
correction of the NIR band using c as calculated by the n = 16,500 random sample 
(middle column), and C-correction of the NIR band using c as calculated by the 
cosi sample (right column), are shown. When the line is horizontal, this shows the 
spectral data have been normalized over the range of cosine of i. 
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Image statistics (Table 4) as well as the scatter plots from the cosi sample (Fig. 
5) indicated that the NIR reflectance had a larger standard deviation in the 
higher cosi strata than in the lower cosi strata. Unequal variance in the sample 
can complicate calculation of the empirical parameter. To investigate whether 
the sample was affected by the vegetation classes or whether the unequal 
variance was more an effect of the topographic and illumination angles, the 
NIR reflectance from the alpine vegetation subset was compared to another 
vegetation type, the sub-alpine birch forest subset (Fig 9). The NIR reflectance 
within the sub-alpine birch forest subset showed less variation across cosi 
strata than did the alpine vegetation subset. To gain more insight into the role 
that different alpine vegetation classes might play within the cosi sample, more 
detailed vegetation class labels were extracted from the GSD-Land Cover and 
Vegetation map (Fig. 10) for each sample. From this, it could be seen that grass 
heath and sparse vegetation had a different linear relationship within the 
sample than did dry/mesic heath, willow and alpine meadow. 
 

 
Fig. 9. Standard deviation of NIR reflectance (y-axis) for all pixels within each 
cosine of i stratum (x-axis) from both the alpine vegetation subset (solid line), and 
the sub-alpine forest subset (dashed line), for all four images. The solar zenith 
angle (SZA) and solar azimuth (Az) for each image is shown just above their 
respective data line.  
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Fig. 10. NIR reflectance (y-axis) versus cosine of i (x-axis) from the cosi sample (n = 5,000) drawn from each respective satellite image. Observations 
are labeled with the corresponding vegetation class taken from the GSD-Land and Vegetation Cover data. 
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5 Discussion 

5.1 Precision of c  

Of the five sampling methods compared in this study, the cosi sample most 
often produced the most precise c over repeated trials for all images (Table 5), 
while the random samples with n = 5,000 and n = 1,600 produced the least 
precise c-parameters. Since c is calculated by dividing the linear regression’s 
intercept by its gradient (Eq. 3), the accurate determination of both intercept 
and gradient are important. In the study area, cosi (the independent variable) 
followed a normal distribution within the scene as a whole, and also within the 
alpine vegetation subset. A random sample of observations, although narrowed 
down to represent the alpine vegetation land cover only, also followed the 
normal distribution of cosi. The majority of observations were therefore 
clustered around the cosi mean, while observations for extreme values of cosi 
were sparse and influential. This rendered precise determination of the 
regression’s intercept and gradient difficult and sometimes instable. Such 
relationships may lead to calculation of unsuitably large or small c-parameters, 
especially when the sample size is too small. This could be seen particularly in 
the n = 1,600 random sample (Fig. 5). While the n = 16,500 random sample 
had better representation, making c more precise, the representation for the 
high cosi values may still not have been sufficient to produce a correct c when 
compared to the spectral variation actually present in the data. In this study, 
more observations were needed from the extreme cosi values, giving 
stratification of the sample by cosi its advantage over random sampling. 
Although the aspect sample was also a stratified sample, in this study area it 
did not guarantee acquiring sufficient observations from low and high cosi, 
resulting in less reliable and less precise c-parameter calculation as compared 
to the cosi sample.  

The advantage of stratifying the sample by cosi was also seen in the 
consistently stronger linear relationships (Table 6). A higher R2 did not indicate 
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that the resulting c-parameter was correct, but that it was based on a dataset 
which better described the relationship between the variables and that would 
produce more precise estimates of c over repeated trials. The random samples 
had the weakest linear relationships, regardless of the sample size, due to the 
observations following the normal distribution of cosi in the study area. For 
any sampling method, the relatively low R2 of the blue band was likely due to 
atmospheric scattering, while the consistently higher R2 of the SWIR1 band 
may have been related to the reflectance characteristics of the alpine vegetation 
classes in the study area.   

5.2 The advantage of power allocation in the cosine of i 
stratified sample 

While stratification of the sample by cosi was advantageous, the particular 
allocation of the observations to each cosi stratum was also important. Fig. 5 
shows that the cosi sample with n = 5,000 captured more spectral variability 
than even the largest random sample (n = 16,500), in particular for the higher 
cosi strata. When determining observation allocation in the stratified sample, 
consideration needs to be taken not only to the independent variable’s (cosi) 
distribution, but also to the dependent variable’s (spectral data) distribution. 
The power allocation fulfills this purpose by incorporating statistics regarding 
the dependent variable. In addition, the power allocation is not dependent on 
stratum size, and can increase allocation within small but important strata. 
Since the power allocation is empirically-based and flexible, it should also be 
applicable for conditions and image data different from those presented in this 
study.  

5.3 Accuracy of the c-parameter 

The c-parameters resulting from the three sampling methods differed, with the 
largest difference being for the NIR band, where c was consistently larger from 
the cosi sample than the other sampling methods. The classification accuracy 
using c-parameters from the cosi sample was slightly higher than that from the 
n = 16,500 random sample, for all images. The reasons for the difference in 
classification accuracy could be partially explained by the evidence that 
optimal c-parameters differed depending on individual vegetation classes, as 
shown in the t-tests, as well as by considering the characteristics of the 
evaluation dataset used for accuracy assessment. Taking the Landsat 2006 
image as an example, for three vegetation classes a higher NIR c (c > 0.5) was 
optimal (representing 390 of 693 evaluation plots), while for two classes a 
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lower NIR c (c ≤ 0.5) was optimal (representing 261 of 693 evaluation plots). 
Therefore, a larger percentage of the evaluation plots were optimally corrected 
using the cosi sample’s c-parameters, with the NIR c > 0.5. These results 
indicate that the cosi sample has produced appropriate c-parameters. However, 
the implication from the t-tests, that multiple vegetation types requiring 
different c-parameters were present in the sample, makes interpretation of the 
accuracy of c less straightforward. In actuality, if multiple vegetation types are 
present in a sample, this may lead to production of an “average c” for those 
vegetation types, depending on their reflectance characteristics and quantities 
within the sample. Even with multiple vegetation classes present, 
however, calculating c from a sample stratified by cosi provides a 
better chance of calculating appropriate c-parameters due to the 
better data representation than from a random sample.  

5.4 Importance of vegetation type specific normalization 

Unequal variance in the data (in addition to non-linearity) is an issue 
occasionally reported in other topographic normalization studies, and in some 
cases has been addressed by linearizing the spectral data (Vincini and Frazzi 
2003). The cause of unequal variance and non-linearity should be identified, 
however. If the root of these confounding factors is that the sample contains 
vegetation types with different reflectance behavior, then ideally, they should 
be separated into different samples. Due to the complex nature of anisotropic 
reflectance, it is difficult to pinpoint any single explanation regarding the NIR 
reflectance behavior in the high cosi strata seen in this study. It may be a result 
of multiple, spectrally different vegetation classes (some of whose ecological 
niches may be highly correlated with topographic characteristics), as well as 
the anisotropic behavior of NIR reflectance as affected by illumination angles, 
effective view angles, and the vegetation canopy (Goodin et al. 2004; Huete et 
al. 1992; Pinter et al. 1990; Qi et al. 1995; Vierling et al. 1997). Addressing the 
circular nature of vegetation class specific topographic normalization was 
outside the scope of this paper. However, the results indicated that calculation 
of empirical parameters for specific alpine vegetation types may be a subject 
worthy of future study. In particular, the classes with shorter and sparser 
vegetation (e.g., dry alpine heath, alpine grass heath) may require separation 
from taller and denser vegetation classes (e.g., mesic alpine heath, alpine 
willow), as well as the alpine meadow. Background soil reflectance may be an 
important contributing factor to the observed radiance for some of the alpine 
vegetation types with sparse canopy cover. Pinter et al. (1990) and Huete et al. 
(1992) determined that the amount of soil viewed through a vegetation canopy 



37 

contributes to the surface anisotropy. In this case, deriving separate 
normalizations for image subsets based on fraction of soil and green vegetation 
(Montandon and Small 2008) may be of interest. Vegetation indices such as 
NDVI [e.g.,\Bishop, 2002 #62] have been used for separating vegetation types, 
although other indices could be tested (e.g., Soil Adjusted Vegetation Index, 
SAVI), with the caution that ratio-based indices still contain topographic and 
illumination effects (Goodin et al. 2004; Huete et al. 1992; Veraverbeke et al. 
2010; Verrelst et al. 2008).  

5.5 Results for Landsat and SPOT 

Four satellite images were used in this study, which were too few to draw 
conclusions regarding the effects of solar illumination angles upon the 
observed results. Issues related to SPOT’s off-nadir view angle were also 
unaddressed in this study. It is, however, interesting that the SPOT 2008 image 
with the largest solar zenith angle (SZA=55º) had the highest NIR standard 
deviation within high cosi strata, while the SPOT 2004 image with the lowest 
solar zenith angle (SZA = 47º) had the lowest NIR standard deviation (Fig. 9). 
Increased NIR reflectance with increasing solar zenith angles and view angles 
has been reported in previous studies for grasslands in flat terrain (Huete et al. 
1992; Pinter et al. 1990) and sloping terrain (Goodin et al. 2004). These same 
studies also showed that red reflectance increased with decreasing solar zenith 
angles, as the illumination of soil relative to grass increased.  

The Landsat TM 2006 image (SZA = 53º) was most affected by completely 
shadowed pixels, which may have been due to the large solar zenith angle, 
while the SPOT 2008 image (SZA = 55º) was less affected by completely 
shadowed pixels, perhaps due to the sensor’s eastward pointing view angle 
(+26.8º). In general, however, the cosi stratified sampling worked well for 
calculating c for all four images used here, despite their different illumination 
and view angles. 

5.6 Summary of suggested method to determine the empirical 
parameter 

From this study, we present suggestions regarding sampling for the calculation 
of appropriate c-parameters for C-correction. An image subset of the 
vegetation type to be normalized should be created, from which the empirical 
parameter will be estimated. We used, for example, an existing land cover map 
to identify a broad “alpine vegetation” subset. Any classes differing greatly in 
reflectance behavior should be excluded from the subset if possible, as done in 
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this study, where bare rock and snow were omitted using an NDVI threshold. 
To determine the minimum number of sample observations for calculation of 
the empirical parameter, sampling theory (e.g., Thigpen 1987) can help provide 
a guideline. The sample used to derive the empirical parameter should be 
stratified on cosi, and in this study we used a 0.1 increment for the cosi strata. 
The allocation of observations to each cosi stratum can be determined using 
power allocation (Bankier 1988) which takes the spectral data properties into 
account and manipulates the influence of stratum size. We used q = 0.3 for all 
strata in the visible bands, while for the NIR and SWIR bands more weight was 
given to the higher cosi stratum (q = 0.4), and less to the lower cosi stratum (q 
= 0.2). The power allocation is flexible, however, and observation allocation 
can be determined according to the data characteristics of each particular study. 
A minimum threshold of the NIR reflectance based on negative cosi values can 
eliminate erroneously included observations of complete shadow from the 
sample. Using this sample, the c-parameters can be determined and the C-
correction applied to the corresponding image subset. This strategy for 
determining the empirical c-parameter -- based on a sample stratified by cosine 
of i and with a power allocation of observations -- may also be useful in 
determination of other empirical parameters such as the Minnaert constant k 
(Smith et al. 1980), the b of b-correction (Vincini and Frazzi 2003), and C in 
SCS+C (Soenen et al. 2005).  
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6 Conclusions 

By comparing the values of the C-correction’s empirical parameter, c, as 
derived from three different sampling strategies (a random sample, a sample 
stratified on aspect, and a sample stratified on cosine of i), it could be seen that 
the calculation of c was influenced by the sample from which it was derived. 
The sample stratified by cosine of i (the “cosi sample”) produced the most 
precise c-parameters (lowest standard deviation over five trials), and had the 
highest coefficients of determinations (R2). A power allocation was used in the 
cosi sample, which provided better representation of the spectral variability 
within high cosine of i strata. This was particularly important for the NIR band. 
The increased representation of the spectral variability was the reason that the 
cosi sample produced different c-parameters as compared to the random and 
aspect samples. “Large” random samples (n = 16,500), taken for alpine 
vegetation only, did not represent the full spectral variability required to 
produce appropriate c-parameters for all alpine vegetation types. Evaluations 
(t-tests and classification accuracy) using photo-interpreted plots showed that 
the cosine of i sample’s c-parameters corrected a larger portion of the 
evaluation data correctly as compared to the other samples.  

Characteristics of the study area’s dataset, such as the distribution of cosine 
of i, the spectral variability, and the vegetation types all exert influences that 
should be considered when taking the sample to derive c. Although the samples 
were narrowed down to alpine vegetation type only, the individual alpine 
vegetation classes within the subset may have benefited from differing c-
parameters to achieve optimal topographic normalization. In particular, sparse 
vegetation types seemed to differ from denser growth types. The work in this 
study focused on non-forest alpine vegetation types using Landsat and SPOT 
images with relatively large solar zenith angles; the applicability of using a 
cosine of i stratified sample as described in this paper to calculate c for other 
vegetation types, or for the calculation of other empirical parameters, is a 
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subject for future study. As the sample’s characteristics have been shown to 
influence the outcome of the empirical parameter, it’s important that future 
topographic normalization studies provide information about the sample used 
to calculate empirical parameters. 

 
Acknowledgments  
The authors thank the Swedish National Space Board for funding of this 
project, as well as the anonymous reviewers who provided helpful comments 
on the manuscript. 
 

 
References   
Bankier, M.D. (1988). Power allocations: Determining sample sizes for subnational areas. The 

American Statistician, 42, 174-177 

Bater, C.W., & Coops, N.C. (2009). Evaluating error associated with lidar-derived DEM 

interpolation. Computers & Geosciences, 35, 289-300 

Bishop, M.P., & Colby, J.D. (2002). Anisotropic reflectance correction of SPOT-3 HRV imagery. 

International Journal of Remote Sensing, 23, 2125-2131 

Blesius, L., & Weirich, F. (2005). The use of the Minnaert correction for land-cover classification 

in mountainous terrain. International Journal of Remote Sensing, 26, 3831-3851 

Carpenter, G.A., Gopal, S., Macomber, S., Martens, S., Woodcock, C.E., & Franklin, J. (1999). A 

neural network method for efficient vegetation mapping. Remote Sensing of Environment, 70, 

326-338 

Civco, D.L. (1989). Topographic normalization of Landsat Thematic Mapper digital imagery. 

Photogrammetric Engineering and Remote Sensing, 55, 1303-1309 

Colby, J.D. (1991). Topographic normalization in rugged terrain. Photogrammetric Engineering 

and Remote Sensing, 57, 531-537 

Conese, C., Gilabert, M.A., Maselli, F., & Bottai, L. (1993). Topographic normalization of TM 

scenes through the use of an atmospheric correction method and digital terrain models 

Photogrammetric Engineering and Remote Sensing, 59, 1745-1753 

Deng, Y.X., Chen, X.F., Chuvieco, E., Warner, T., & Wilson, J.P. (2007). Multi-scale linkages 

between topographic attributes and vegetation indices in a mountainous landscape. Remote 

Sensing of Environment, 111, 122-134 

Ekstrand, S. (1996). Landsat TM-based forest damage assessment: Correction for topographic 

effects. Photogrammetric Engineering and Remote Sensing, 62, 151-161 

Giardino, C., & Brivio, P.A. (2003). The application of a dedicated device to acquire bidirectional 

reflectance factors over natural surfaces. International Journal of Remote Sensing, 24, 2989-

2995 

Giles, P.T. (2001). Remote sensing and cast shadows in mountainous terrain. Photogrammetric 

Engineering and Remote Sensing, 67, 833-839 

Goodin, D.G., Gao, J.C., & Henebry, G.M. (2004). The effect of solar illumination angle and 

sensor view angle on observed patterns of spatial structure in tallgrass prairie. Ieee 

Transactions on Geoscience and Remote Sensing, 42, 154-165 



41 

Gu, D., & Gillespie, A. (1998). Topographic normalization of Landsat TM images of forest based 

on subpixel Sun-canopy-sensor geometry. Remote Sensing of Environment, 64, 166-175 

Holben, B.N., & Justice, C.O. (1980). The topographic effect on spectral response from nadir-

pointing sensors Photogrammetric Engineering and Remote Sensing, 46, 1191-1200 

Huete, A.R., Hua, G., Qi, J., Chehbouni, A., & Vanleeuwen, W.J.D. (1992). Normalization of 

multidirectional Red and NIR reflectances with the SAVI Remote Sensing of Environment, 41, 

143-154 

Hugli, H., & Frei, W. (1983). Understanding anisotropic reflectance in mountainous terrain 

Photogrammetric Engineering and Remote Sensing, 49, 671-683 

Kane, V.R., Gillespie, A.R., McGaughey, R., Lutz, J.A., Ceder, K., & Franklin, J.F. (2008). 

Interpretation and topographic compensation of conifer canopy self-shadowing. Remote 

Sensing of Environment, 112, 3820-3832 

Kobayashi, S., & Sanga-Ngoie, K. (2009). A comparative study of radiometric correction 

methods for optical remote sensing imagery: the IRC vs. other image-based C-correction 

methods. International Journal of Remote Sensing, 30, 285-314 

Lehtonen, R., & Pahkinen, E. (2004). Practical Methods for Design and Analysis of Complex 

Surveys. (2 ed.). Chichester: John Wiley & Sons 

Meyer, P., Itten, K.I., Kellenberger, T., Sandmeier, S., & Sandmeier, R. (1993). Radiometric 

corrections of topographically induced effects on Landsat TM data in an alpine environment 

Isprs Journal of Photogrammetry and Remote Sensing, 48, 17-28 

Montandon, L.M., & Small, E.E. (2008). The impact of soil reflectance on the quantification of 

the green vegetation fraction from NDVI. Remote Sensing of Environment, 112, 1835-1845 

Neyman, J. (1934). On the two different aspects of the representative method: the method of 

stratified sampling and the method of purposive selection. Journal of the Royal Statistical 

Society, 97, 558-625 

Nichol, J., Hang, L.K., & Sing, W.M. (2006). Empirical correction of low Sun angle images in 

steeply sloping terrain: a slope-matching technique. International Journal of Remote Sensing, 

27, 629-635 

Olthof, I., Butson, C., & Fraser, R. (2005). Signature extension through space for northern 

landcover classification: A comparison of radiometric correction methods. Remote Sensing of 

Environment, 95, 290-302 

Pinter, P.J., Jackson, R.D., & Moran, M.S. (1990). Bidirectional reflectance factors of agricultural 

targets - A comparison of ground-based, aircraft-based, and satellite-based observations 

Remote Sensing of Environment, 32, 215-228 

Proy, C., Tanre, D., & Deschamps, P.Y. (1989). Evaluation of topographic effects in remotely 

sensed data Remote Sensing of Environment, 30, 21-32 

Qi, J., Moran, M.S., Cabot, F., & Dedieu, G. (1995). Normalization of sun/view angle effects 

using spectral albedo-based vegetation indexes Remote Sensing of Environment, 52, 207-217 

Rafstedt, T. (1983). Fjällensvegetation: Norrbottens län. Stockholm, Sweden: Naturgeografiska 

Intitutet, Stockholm University. Liber distribution. 

Reese, H., Nilsson, M., & Olsson, H. (2009). Comparison of Resourcesat-1 AWiFS and SPOT-5 

data over managed boreal forest stands. International Journal of Remote Sensing, 30, 4957-

4978 



42 

Riaño, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of different topographic 

corrections in Landsat-TM data for mapping vegetation types (2003). Ieee Transactions on 

Geoscience and Remote Sensing, 41, 1056-1061 

Richter, R., Kellenberger, T., & Kaufmann, H. (2009). Comparison of topographic correction 

methods. Remote Sensing, 1, 184-196 

Riedel, S.M., Epstein, H.E., & Walker, D.A. (2005). Biotic controls over spectral reflectance of 

arctic tundra vegetation. International Journal of Remote Sensing, 26, 2391-2405 

Roberts, D.A., Smith, M.O., & Adams, J.B. (1993). Green vegetation, nonphotosynthetic 

vegetation, and soils in AVIRIS data Remote Sensing of Environment, 44, 255-269 

Roy, D.P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., & Lindquist, E. (2008). Multi-

temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and 

prediction of Landsat data. Remote Sensing of Environment, 112, 3112-3130 

Shepherd, J.D., & Dymond, J.R. (2003). Correcting satellite imagery for the variance of 

reflectance and illumination with topography. International Journal of Remote Sensing, 24, 

3503-3514 

Sibson, R. (1981). A brief description of natural neighbor interpolation. In V. Barnet (Ed.), 

Interpolating Multivariate Data (pp. 21-36). New York: John Wiley & Sons 

Smith, J.A., Lin, T.L., & Ranson, K.J. (1980). The Lambertian assumption and Landsat data 

Photogrammetric Engineering and Remote Sensing, 46, 1183-1189 

Soenen, S.A., Peddle, D.R., & Coburn, C.A. (2005). SCS+C: A modified sun-canopy-sensor 

topographic correction in forested terrain. Ieee Transactions on Geoscience and Remote 

Sensing, 43, 2148-2159 

Soenen, S.A., Peddle, D.R., Coburn, C.A., Hall, R.J., & Hall, F.G. (2008). Improved topographic 

correction of forest image data using a 3-D canopy reflectance model in multiple forward 

mode. International Journal of Remote Sensing, 29, 1007-1027 

Ståhl, G., Allard, A., Esseen, P.-A., Glimskär, A., Ringvall, A., Svensson, J., Sundquist, S., 

Christensen, P., Gallegos Torell, Å., Högström, M., Lagerqvist, K., Marklund, L., Nilsson, B., 

& Inghe, O. (2010). National Inventory of Landscapes in Sweden (NILS) - scope, design, and 

experiences from estabilshing a multiscale biodiversity monitoring system. Environmental 

Monitoring and Assessment [Published online 17 March 2010] 

Stow, D.A., Hope, A.S., & George, T.H. (1993). Reflectance characteristics of Arctic tundra 

vegetation from airborne radiometry. International Journal of Remote Sensing, 14, 1239-1244 

Teillet, P.M. (1986). Image correction for radiometric effects in remote sensing. International 

Journal of Remote Sensing, 7, 1637-1651 

Teillet, P.M., Guindon, B., & Goodenough, D.G. (1982). On the slope-aspect correction of 

multispectral scanner data. Canadian Journal of Remote Sensing, 8, 84-106 

Thigpen, C.C. (1987). A sample-size problem in simple linear regression. The American 

Statistician, 41, 214-215 

Veraverbeke, S., Verstraeten, W.W., Lhermitte, S., & Goossens, R. (2010). Illumination effects 

on the differenced Normalized Burn Ratio's optimality for assessing fire severity. 

International Journal of Applied Earth Observation and Geoinformation, 12, 60-70 



43 

Verrelst, J., Schaepman, M.E., Koetz, B., & Kneubuhler, M. (2008). Angular sensitivity analysis 

of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, 

112, 2341-2353 

Vicente-Serrano, S.M., Perez-Cabello, F., & Lasanta, T. (2008). Assessment of radiometric 

correction techniques in analyzing vegetation variability and change using time series of 

Landsat images. Remote Sensing of Environment, 112, 3916-3934 

Vierling, L.A., Deering, D.W., & Eck, T.F. (1997). Differences in arctic tundra vegetation type 

and phenology as seen using bidirectional radiometry in the early growing season. Remote 

Sensing of Environment, 60, 71-82 

Vincini, M., & Frazzi, E. (2003). Multitemporal evaluation of topographic normalization methods 

on deciduous forest TM data. Ieee Transactions on Geoscience and Remote Sensing, 41, 

2586-2590 

 

 

 


