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Abstract

A new method for sampling from a finite population that is spread
in one, two or more dimensions is presented. Weights are used to
create strong negative correlations between the inclusion indicators of
nearby units. The method can be used to produce unequal probability
samples that are well spread over the population in every dimension,
without any spatial stratification. Since the method is very general
there are numerous possible applications, especially in sampling of
natural resources where spatially balanced sampling has proven to be
efficient. Two examples show that the method gives better estimates
than other commonly used designs.

Keywords: Correlated Poisson Sampling, Generalized Random Tes-
sellation Stratified design, negative correlation, spatial sampling, spa-
tially balanced sampling, unequal probability sampling

1 Introduction

This paper presents a new and very general sampling method that can be
used to draw unequal probability samples from a population that is spatially
spread in one, two or more dimensions. Many applications of spatial sampling
can be found in environmental studies, where the population is distributed
over space. Forest inventory is one example, where remote sensing data may
be available. Such information can be included in the sampling design to
make field inventories more efficient. The proposed method is called Spatially
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Correlated Poisson Sampling (SCPS) and is a modification of Correlated
Poisson Sampling (CPS), introduced by Bondesson & Thorburn (2008). With
SCPS it is possible to select samples that are spatially balanced. The sample
locations are then well distributed over the population, which has proven to
be efficient for sampling natural resources.

One way to produce unequal probability samples that are well spread
over the population is to make a spatial stratification. A problem with spa-
tial stratification is that it is seldom clear how to stratify in a good way. If
the inclusion probabilities are equal it is often very efficient to use maximal
stratification, i.e. to select one or two units per stratum. It is not straight-
forward how to generalize this concept to unequal inclusion probabilities.
Bondesson & Grafström (2010) extended Sampford’s (1967) sampling design
to make it possible to coordinate the selection of an unequal probability sam-
ple over many small strata when the inclusion probabilities have non-integer
sums within strata. If the population is spatially stratified into small strata
with inclusion probability sums greater than or equal to 1, then it is possible
to make sure that the sample is well spread over the population. However,
the stratification is somewhat arbitrary.

In one dimension (units along a line) it is possible to use systematic πps
sampling (see e.g. Brewer & Hanif, 1983, pp. 21-22) to produce unequal
probability samples that are well spread over the population. This idea was
generalized to two dimensions by Stevens & Olsen (2004) who introduced the
Generalized Random-Tessellation Stratified (GRTS) design. The idea behind
GRTS is to map the two-dimensional locations into one dimension while
preserving some spatial order. The sample is then selected in one dimension,
using systematic πps sampling, and mapped back into two dimensions.

In order to use the new SCPS-design it is required that some kind of dis-
tance can be calculated between units. The focus is on introducing negative
correlation between the inclusion indicators of units that are close in dis-
tance. In that way units that are close seldom appear simultaneously in the
sample. The samples produced will then be well spread over the population.
This can be achieved without spatial stratification. Before the design can be
described, we need to introduce the sampling situation and some notation.
Let U = {1, 2, ..., N} be a finite spatial population of N units. The goal is
usually to estimate the population total of some study variable with value
yi for unit i. We assume throughout that we want to estimate the total
Y =

∑N
i=1 yi.

If we have access to some auxiliary information, other than the location of
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the units, that information may be used. One example is when we know the
value of a variable, zi, for each unit i and z ∝ y holds approximately. Then
units will be sampled with a probability proportional to z, i.e. the inclusion
probability πi for unit i will be chosen as πi = czi, where c is a positive
constant. If such information is not available, sampling is made with equal
inclusion probabilities for all units.

When a sample has been selected, the total Y can be estimated by the
unbiased Horvitz-Thompson estimator

ŶHT =
N∑
i=1

yi
πi

Ii, (1)

where Ii, i = 1, 2, ..., N , are inclusion indicators, i.e. Ii = 1 if unit i is in the
sample and Ii = 0 otherwise. If the sample size is random, then it is often
better to use the nearly unbiased Horvitz-Thompson ratio estimator

ŶR = Z

∑N
i=1

yi
πi
Ii∑N

i=1
zi
πi
Ii
, (2)

where Z =
∑N

i=1 zi. If πi = czi, then ŶR simplifies to

ŶR =
Z

|I|

N∑
i=1

yi
zi
Ii,

where |I| =
∑N

i=1 Ii is the sample size. If the sample size is fixed and πi = czi,
then (2) and (1) are identical.

In section 2, the CPS-design is described. Then, in section 3, the gen-
eralization to spatial sampling is presented. Two simulation examples are
provided in section 4 and variance estimation is discussed in section 5. Con-
cluding comments are given in section 6.

2 Correlated Poisson Sampling

Correlated Poisson Sampling was introduced by Bondesson & Thorburn
(2008) as a method suitable for real time sampling with unequal inclusion
probabilities. In real time sampling the units of the population are visited
by the sampler one by one in some order. The sampler must decide at the
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visit whether or not the unit should be sampled. There is no possibility to
re-visit units at a later time. The method can be used to create correlations
as desired between the inclusion indicators. In real time sampling it is often
good to have negative correlation between the inclusion indicators of units
that are close in the order they are visited. The method is very flexible. In
fact, every without replacement design with prescribed inclusion probabili-
ties can be implemented by CPS, cf. Bondesson & Thorburn (2008). The
method is list sequential, i.e. it is applied to a list of units and the sampling
outcome is first decided for unit 1, then for unit 2 etc. After each sampling
decision, the inclusion probabilities for the remaining units in the list are
updated according to a specific updating rule.

Each unit i has a prescribed inclusion probability πi, i = 1, 2, ..., N , with∑N
i=1 πi = n. Thus the expected sample size is n. We will assume that n is

an integer, but that is not required for CPS to work. However it simplifies
comparisons between different approaches. The method works as follows.
First unit 1 is included with probability π

(0)
1 = π1. If unit 1 was included,

we set I1 = 1 and otherwise I1 = 0. Generally at step j, when the values
for I1, ..., Ij−1 have been recorded, unit j is included with probability π

(j−1)
j .

Then the inclusion probabilities are updated for the units i = j + 1, ..., N ,
according to

π
(j)
i = π

(j−1)
i − (Ij − π

(j−1)
j )w

(i)
j , (3)

where w
(i)
j are weights given by unit j to the units i = j + 1, j + 2, ..., N and

π
(0)
i = πi. For unit j it is convenient to let π

(k)
j = Ij for k ≥ j. The updating

can then be illustrated as

π(0) : π1 π2 π3 π4 · · · πN

π(1) : I1 π
(1)
2 π

(1)
3 π

(1)
4 · · · π

(1)
N

π(2) : I1 I2 π
(2)
3 π

(2)
4 · · · π

(2)
N

π(3) : I1 I2 I3 π
(3)
4 · · · π

(3)
N

...
...

...
...

...
. . .

...
π(N) : I1 I2 I3 I4 · · · IN

.

Thus we gradually update the inclusion probability vector in N steps, until
it becomes the vector of inclusion indicators.
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2.1 The weights

Since every without replacement design with prescribed inclusion probabili-
ties can be implemented by CPS, it all comes down to finding weights that
give the desired design or properties. The weight w

(i)
j , j < i, determines

how the inclusion probability for unit i should be affected by the sampling
outcome for unit j. More precisely, the weight w

(i)
j , j < i, may depend on

the previous sampling outcome I1, I2, ..., Ij−1 but not on the future outcomes
Ij, Ij+1, ..., IN . From (3), we see that the weights should also satisfy the
following restrictions

−min

(
1− π

(j−1)
i

1− π
(j−1)
j

,
π
(j−1)
i

π
(j−1)
j

)
≤ w

(i)
j ≤ min

(
π
(j−1)
i

1− π
(j−1)
j

,
1− π

(j−1)
i

π
(j−1)
j

)
(4)

in order for 0 ≤ π
(j)
i ≤ 1, i = j + 1, j + 2, ..., N , to hold. Besides these

restrictions the weights may be chosen freely. The unconditional inclusion
probabilities are not affected by the weights since

E(π
(i−1)
i ) = E(E(π

(i−1)
i | π(i−2)

i )) = E(π
(i−2)
i ) = · · · = πi.

Thus the method always gives the prescribed inclusion probabilities πi, i =
1, 2, ..., N . As can be seen from the restrictions (4) it is possible to have
negative weights. Usually positive weights give negative correlations between
the inclusion indicators and negative weights give positive correlation. In this
paper, the focus is on positive weights.

Bondesson & Thorburn (2008) gave some examples on how to choose the
weights to get some specific designs. They also derived a general expression
for the weights needed to implement any specific design. However, such
weights are in general not practical to calculate.

Another important result about the weights, given by Bondesson & Thor-
burn (2008), is that if the weights w

(i)
j , j < i, sum to 1 for each j < N , then

a fixed sample size is obtained if the πis sum to an integer. Since a fixed
sample size often is desirable, we try to construct weights that sum to 1.

Different strategies for choosing the weights for the real time sampling
situation were investigated by Grafström (2010a). Those strategies depended
solely on the order of the units in the list. More weight was given to units
that followed close in the order. For some different sampling situations,
those strategies gave very promising results in terms of low variance for the
Horvitz-Thompson ratio estimator. The gain was the greatest when there
existed some trend in the ratios yi/zi over the ordered population.
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2.2 The probability function

A sampling design and all its properties are given by its probability function.
The probability function may be of theoretical interest and can give a better
understanding of the sampling method. A random sample is described by the
vector of inclusion indicators I = (I1, I2, ..., IN) and a sample, which is the
outcome of I is here denoted by x. By using the fact that the implementation
is list sequential and that the updated inclusion probabilities are known for
a generated sample x, the probability function for CPS can be written as

Pr(I = x) =
N∏
i=1

(
π
(i−1)
i

)xi
(
1− π

(i−1)
i

)1−xi

, x ∈ {0, 1}N , (5)

cf. Grafström (2010b). Notice that π
(i−1)
i is a function of the first i − 1

components of x and can be recursively calculated by using the updating
rule (3).

3 Spatially Correlated Poisson Sampling

It is possible to adapt the CPS method by introducing a distance between
units, rather than just having an ordered list of the units. The new method,
SCPS, works exactly as CPS and it is applied to an ordered list of units.
The only additional requirement is that the distance between all units must
be known. The SCPS-design is a set of strategies for choosing weights for
CPS. We need a distance function d(i, j) that gives a distance between units
i and j. The distance d(i, j) may be the Euclidean distance or some other
general distance measure. In some cases it may suffice to rank the distances
to determine which unit is the closest, the next closest etc. Two different
strategies for choosing the weights are given here.

3.1 Maximal weights

One approach to choose weights is that unit j first gives as much weight as
possible to the closest unit (in distance) among the units i = j+1, j+2, ..., N ,
then as much weight as possible to the second closest unit etc. with the
restriction that the weights sum to 1. This strategy is called the maximal
weight strategy. If distances can be equal, then the weight is distributed
equal on those units that have equal distance if possible. The first priority is
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that weight is not put on a unit if it is possible to put the weight on a closer
unit. The maximal weight strategy always produces samples of fixed size if
the inclusion probabilities sum to an integer.

Example 1. A small population of size N = 4 is used to illustrate how
the weights are distributed with the maximal weight strategy. The units are
shown in Figure 1. All distances between the units are equal to 1 except for
the distance between unit 2 and 4, which is 1.73. Let π1 = 0.8, π2 = 0.2,
π3 = 0.8 and π4 = 0.2, which gives a sample size of n = 2. The visiting order

Figure 1: A small population used to illustrate the maximal weight strategy.

is chosen to be 1, 2, 3, 4 and thus the sampling starts with unit 1, which has
3 closest units. According to the restrictions (4) on the weights, unit 1 can
give a maximal weight of 1 to unit 2, a maximal weight of 0.25 to unit 3 and
a maximal weight of 1 to unit 4. Now, we always begin to give weight to the
unit with the smallest maximal weight among units at equal distance. We
try to distribute the weight as equal as possible, which means that we try to
give unit 3 weight 1/3. Since it is not possible to give unit 3 weight 1/3, we
give it the maximal weight 0.25. Unit 1 now has a total weight of 0.75 left
to give to the units 2 and 4. Since the maximal weights for unit 2 and unit
4 are equal we can start with unit 2. Then we try to give unit 2 the weight
0.75/2 = 0.375, which is possible. The remaining weight 0.375 is put on unit
4. We set I1 = 1 with probability 0.8 and I1 = 0 with probability 0.2. If we
assume that I1 = 1, then we get the following new probabilities π

(1)
2 = 0.125,

π
(1)
3 = 0.75 and π

(1)
4 = 0.125. Since the outcome is decided for unit 1 it is

not considered further and we move on to unit 2, which is easier to handle
since there are no units at equal distance any more. The closest unit to unit
2 is now unit 3 and the maximal weight to give unit 3 is 0.75/0.875 so it
receives that weight. Unit 4 receives the remaining weight 0.125/0.875. We

set I2 = 1 with probability π
(1)
2 = 0.125 and I2 = 0 with probability 0.875. If

the outcome is I2 = 1 the sampling is finished since we would have π
(2)
3 = 0

and π
(2)
4 = 0. If the outcome is I2 = 0, the procedure continues similarly.
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A property of the maximal weight strategy is that it balances the sample
size locally, like a form of loose stratification without strict borders. For any
subset A of all units within some subregion, the number of selected units∑

i∈A Ii will be close to the sum of the inclusion probabilities
∑

i∈A πi. In
a sense it is not possible to make the local sample sizes more balanced. In
some cases stratification, with fixed sample size within strata, automatically
appear as the following theorem shows.

Theorem 1. Let the population consist of two separated regions A and B,
such that the within region distances are always less than the distance between
units in different regions. If

∑
i∈A πi = nA and

∑
i∈B πi = nB, where nA and

nB are positive integers, then the maximal weight strategy produces samples
of fixed sizes, nA and nB respectively. The sample sizes will be fixed regardless
of the order of the sampling.

Proof. Unit j (in the arbitrary given order) must distribute weights that sum
to 1 in order to keep the sum of the updated inclusion probabilities constant.
By construction of the maximal weight strategy, unit j will first put weight
on the closest unit among the units j + 1, ..., N . Hence the weight is put on
units in the same region first. It remains to show that it is always possible to
distribute weights with sum 1 within the same region as unit j. If we assume
the opposite, that no such solution is possible with maximal weights, then
it is not possible to select a fixed size sample from this region and respect
the inclusion probabilities using any other design. Since we know that if e.g.∑

i∈A πi = nA and nA is integer it is always possible to select a fixed size
sample that respect the inclusion probabilities, by using e.g. systematic πps
design, a solution exist for the maximal weight strategy as well. �

Remark 1. Theorem 1 can be directly extended to any number of similarly
separated regions with integer valued inclusion probability sums.

3.2 Gaussian preliminary weights

Another strategy is to choose preliminary weights with sum 1 that are con-
trolled by a Gaussian distribution centred at the position of unit j. The
weights may then be chosen as

w
(i)∗
j ∝ exp

(
− (d(i, j)/σ)2

)
, i = j + 1, j + 2, ..., N. (6)
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Here σ is a parameter that can be used to control the spread of the weights.
Evidently more weight is put on units that are close and all units on the same
distance receive the same preliminary weight. How to choose the scaling
parameter σ depends on the distance between units. One option is to choose
σ as the average (or median) of the distances between each unit and its
closest neighbour. The weights are called preliminary since the restrictions,
(4), may interfere and cut off some weights. Thus the weights that are used
may be smaller than the preliminary weights. This fact will generally cause
a very small variation in the sample size.

Remark 2. For both maximal weights and Gaussian preliminary weights,
the order of the units in the list does affect the design. If the order is changed,
then the second order inclusion probabilities may be changed. Nonetheless
the design has the same general properties no matter how the units are
ordered since the weights depend on distances. Thus it is not so important
how the units are ordered. The samples will always be well spread over the
population, so the efficiency of the method is practically independent of the
ordering.

4 Simulation studies

In this section the SCPS-design is tested in different sampling situations by
use of simulation. The approach of Voronoi polygons, suggested by Stevens
& Olsen (2004), is used to compare spatial balance. We assume that n =∑N

i=1 πi is a positive integer. For a sample of units {u1, u2, ..., un}, the Voronoi
polygon for the sample unit ui include all population units closer to ui than
to any other sample unit uj. See Figure 2 for an example. Let vi be the
sum of the inclusion probabilities of all units in the ith Voronoi polygon. If
a population unit has equal distance to two or more sample units, then it is
included in more than one polygon. The inclusion probability of that unit is
then divided equally to each polygon it is included in.

For a randomly chosen sample unit ui, we have E(vi) = 1 since there are
n units in the sample and

∑n
i=1 vi =

∑N
i=1 πi = n. For a spatially balanced

sample, all the vis should be close to 1. Let v = (v1, v2, ..., vn). Then the
variance

var(v) =
1

n

n∑
i=1

(vi − 1)2 (7)
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Figure 2: Example of Voronoi polygons. The locations of the sample units
used to construct the Voronoi polygons are marked with black dots and the
locations of the non-sampled units are marked with circles. For a balanced
sample there should be approximately equal amount of probability mass in
each polygon.

is used as a measure of spatial balance for a sample. To compare different
sampling designs, the mean of (7) is computed over many repeated samples.

Example 2. In this example we consider a 10x10 grid where each cell has
length and width 1 and correspond to one unit. We wish to estimate the
total of a variable y that has value yi for unit i. The units in row 1 are
labelled 1-10 consecutively, and the units in row 2 are labelled 11-20 etc.
The x-position for unit i is given by its column number and the y-position
by its row number. The auxiliary information z is given by

z =



1 1 1 2 2 2 2 2 2 2
1 1 2 3 3 4 4 4 3 3
1 2 3 4 4 5 5 5 4 4
2 3 4 5 6 7 7 7 6 5
2 3 4 6 7 8 9 8 7 6
2 4 5 7 8 9 10 9 8 7
2 4 5 7 9 10 10 10 9 7
2 4 5 7 8 9 10 9 8 7
2 3 4 6 7 8 9 8 7 6
2 3 4 5 6 7 7 7 6 5


.

There is a strong spatial trend in z with a peak at z67 (row 7, column 7). The
auxiliary information may be the result of remote sensing and correspond to
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average intensity for each cell. To also have a spatial trend in the ratios, we
have assumed the following relationship for the ratios yi/zi

yi/zi = 1.1− 0.2× zi −mini(zi)

maxi(zi)−mini(zi)
.

Then yi/zi has a perfect linear trend in zi and hence also a trend in space.
The ratios vary from 1.1 for the smallest zi to 0.9 for the largest zi. This
corresponds to a situation where small intensities tend to overestimate the
target variable and larger intensities tend to underestimate the target vari-
able, which is common with remote sensing data. Of course, an error term
can be added to the ratios to make the situation more realistic, but adding
noise makes it more difficult to see which methods really can capture the
spatial trends.

From the population of size N = 100 we shall sample n = 25 units.
The inclusion probabilities are chosen as πi = czi with

∑N
i=1 πi = n for the

unequal probability designs. The following sampling designs are compared.

• SCPS with maximal weights (SCPS 1), which gives spatially balanced
samples of fixed size with prescribed inclusion probabilities.

• SCPS with weights chosen as (6) with Euclidean distance and σ = 1
(SCPS 2), which gives spatially balanced samples of random size with
prescribed inclusion probabilities. The variation in the sample size is
generally very small.

• Generalized Random-Tessellation Stratified (GRTS), which gives spa-
tially balanced samples of fixed size with prescribed inclusion probabil-
ities.

• Maximum stratification (MSTRAT) with selection of one unit per stra-
tum with equal inclusion probabilities. The grid is stratified into 25
strata of size 2x2 and one unit is selected with simple random sampling
within each stratum.

• Sampford sampling (SAMPF), which gives samples of fixed size and
prescribed inclusion probabilities but does not produce spatially bal-
anced samples.

• Poisson sampling (POISS), which gives samples of varying size and pre-
scribed inclusion probabilities but does not produce spatially balanced
samples.
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• Simple random sampling (SRS) with equal inclusion probabilities, which
does not produce spatially balanced samples.

For all designs, the HT-ratio estimator (2) is used. For SRS and MSTRAT
the estimator is used with equal inclusion probabilities (πi = 1/4). Hence
the strong auxiliary information is utilized even for SRS and MSTRAT, but
in the estimation stage instead of being directly included in the sampling
design.

A total of n(s) = 1000 samples were selected with each design and the
mean square error (MSE) was estimated as

MSESim(Ŷ ) =
1

n(s)

∑
s

(Ŷ (s)− Y )2. (8)

The results for this simulation are found in Table 1 and as we can see, the
best result is obtained for SCPS 1 followed by SCPS 2. A bit surprising is
that MSTRAT is more efficient than SAMPF since MSTRAT does not use
unequal probabilities. Thus it is more important to spread the sample over
space than to use unequal inclusion probabilities and ignore spatial trends.
The GRTS design performs well and is better than MSTRAT as expected.
We notice that the HT-ratio estimator seems to be slightly biased under the
MSTRAT design.

Example 3. In this example a population of size N = 20 is used. The
population can be seen in Figure 3 and the details are listed in Appendix.
Before the sampling is performed we have only information about the location
of the units. Thus sampling is made with equal inclusion probabilities. It is
not clear how to stratify on location for this population and hence SCPS will
be compared to GRTS and SRS. For SCPS we use maximal weights (SCPS
1) and Gaussian preliminary weights with σ = 1 (SCPS 2). Samples of size
n = 8 are selected and we want to estimate the total of a variable y that
has value yi for unit i. A total of n(s) = 1000 samples were selected and the
MSE was estimated by (8). The estimator used is the HT-ratio estimator
(2) with πi = 8/20 and zi = 1 for all units. The results are listed in Table 2.
We see that SCPS 1 is the most efficient design followed closely by SCPS 2.
Both these designs succeed in capturing the spatial trend. The GRTS design
is more efficient than the SRS design, but not as efficient as SCPS.
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Table 1: Simulation results for Example 2. The true total is Y = 505.59.
The presented measure of spatial balance is the mean of (7) over all simu-
lated samples. A low value indicates a high degree of spatial balance. For
MSTRAT and SRS, (7) is calculated with equal inclusion probabilities and
the spatial balance of these designs should not be directly compared to the
unequal probability designs.

Design mean(Ŷ ) MSESim(Ŷ ) Spatial balance
SCPS 1 505.70 2.7 0.062
SCPS 2 505.65 4.7 0.071
GRTS 505.53 6.8 0.096
MSTRAT 508.61 15.3 0.063
SAMPF 505.61 22.1 0.219
POISS 505.37 23.0 0.243
SRS 506.19 26.1 0.238

Remark 3. Of course, a computer program is needed to select SCPS sam-
ples. All designs were implemented in the R statistical programming lan-
guage, except for the GRTS design for which the R package spsurvey (Kin-
caid, 2009) was used. SCPS can be used for fairly large populations. Selecting
a sample from a population of size 1000 takes less than 1 second and selecting
a sample from a population of size 10000 takes about 30 seconds (on a Dell
Latitude E6410). A population size of 100000 is also feasible and selecting
a sample takes about one hour. For really large populations, a rough initial
spatial stratification is recommended to have feasible population sizes. Such
a stratification does not significantly affect the overall spatial balance.

5 Variance estimation

Variance estimation can be a bit tricky for SCPS in general. If the maximal
weight strategy is used, then many of the second order inclusion probabilities
will be zero. This makes it impossible to make a design-based unbiased
estimator of the variance. For other weight strategies, that spread the weights
more, it is possible to approximate the second order inclusion probabilities
and obtain an approximately unbiased design-based variance estimator cf.
Bondesson & Thorburn (2008). However, if the weights are more spread
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Figure 3: The spatial population used in Example 3. The centre of each
circle marks the position of the units and the area of the circles correspond
to the study variable y, which has strong spatial trends. The labels of the
units are shown to the right of each unit.

out, the samples will be less spatially balanced and the estimator will be less
efficient.

It is a common problem for spatially balanced sampling that the second
order inclusion probabilities may be zero or very close to zero for units (or
points) that are close in distance. There are different solutions to this prob-
lem. One may use an estimator that overestimates the variance. Such an
estimator can be constructed by pretending that the sample has been se-
lected by another design with non-zero second order inclusion probabilities.
In such a situation it is hard to say how much the variance is overestimated,
but at least it is possible to get a conservative variance estimate.

Stevens & Olsen (2003) introduced a local neighbourhood variance esti-
mator for the GRTS design that seemed to produce good variance estimates.
It may be possible to develop a similar variance estimator for the SCPS de-
sign, or perhaps use the same estimator. Finding a good variance estimator
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Table 2: Simulation results for Example 3. The true total is Y = 5.79. The
presented measure of spatial balance is the mean of (7) over all simulated
samples. A low value indicates a high degree of spatial balance.

Design mean(Ŷ ) MSESim(Ŷ ) Spatial balance
SCPS 1 5.79 0.47 0.134
SCPS 2 5.77 0.54 0.134
GRTS 5.80 0.79 0.179
SRS 5.79 1.66 0.306

requires some further work and such an estimator needs to be evaluated in
different settings. This may be the topic of a subsequent paper.

6 Final comments

It is interesting that there is a noticeable difference between GRTS and SCPS
and the reason is that SCPS samples are even more balanced than GRTS
samples. The mapping used in GRTS is not perfect in the sense that units
that are close in distance may be mapped rather far apart in the one di-
mensional space where the sampling is made. Nonetheless GRTS produces
samples that are much more evenly distributed over space than an ordinary
unequal probability design, such as the Sampford design, does. The Samp-
ford design has high entropy, which means that the probability mass is well
distributed on all possible samples of the given size. In spatial sampling,
high entropy is in general not a good property, it is better to focus the prob-
ability mass on samples that are well spread. The main strength of SCPS
lies in the ability to use unequal inclusion probabilities and that the method
produces samples that are well spread over the population. The latter part
is very important if the relationship between the auxiliary variable z and the
study variable y vary over space, i.e. if there exists some trend in the ratios
yi/zi over space. If the design is used with equal inclusion probabilities, then
it is good in cases where the study variable has trends over space. A big
advantage with SCPS is that it does not require a spatial stratification. In
order to make good spatial stratification some knowledge is needed about the
spatial trends, otherwise there is a risk that the within stratum variances are
greater than the population variance. With SCPS there is no such risk as
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long as nearby units tend to be more similar than units further apart. SCPS
is rather easy to implement and gives samples well spread over the popula-
tion for any number of dimensions, and can be used with equal or unequal
inclusion probabilities. Two different weight strategies have been presented.
Maximal weights that seem to always produce the most efficient estimator
in situations where nearby units have similar values. With Gaussian prelim-
inary weights it is possible to adjust how much to spread out the weights.
Gaussian preliminary weights are a bit easier to implement. Of course, the
weights can be chosen in other ways than described here. SCPS can then, at
least in theory, implement any other spatial without replacement sampling
design with prescribed inclusion probabilities.
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A Details for the population used in Example 3

Table 3: The population used in Example 3

Unit x-position y-position Target variable (y)
1 6.73 1.12 0.19
2 4.30 7.84 0.11
3 4.52 2.92 0.65
4 6.10 6.04 0.17
5 0.59 9.64 0.01
6 3.16 4.32 0.68
7 7.73 6.95 0.04
8 6.96 7.58 0.04
9 1.25 4.33 0.53
10 1.30 6.55 0.23
11 0.92 1.10 0.42
12 0.08 9.34 0.02
13 4.23 1.87 0.63
14 6.56 2.66 0.28
15 7.23 7.98 0.03
16 5.31 4.88 0.39
17 1.09 7.69 0.10
18 6.32 3.96 0.30
19 1.26 2.73 0.61
20 1.34 0.37 0.36
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