
Species Community Structure and 
Functional Redundancy in Swedish 

Headwater Streams  

Local versus Regional Control 

Emma Göthe 
Faculty of Natural Resources and Agricultural Sciences 

Department of Aquatic Sciences and Assessment 
Uppsala 

  

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Uppsala 2013 



Acta Universitatis agriculturae Sueciae 
2013:9 

ISSN 1652-6880 
ISBN 978-91-576-7766-2 
© 2013 Emma Göthe, Uppsala 
Print: SLU Service/Repro, Uppsala 2013 

Cover: Sampling site in the Krycklan catchment 
(photo: E. Göthe) 



Species Community Structure and Functional Redundancy in 
Swedish Headwater Streams. Local versus Regional Control. 

Abstract 
Streams and rivers only contain a small proportion of the Earth’s freshwater, but 
nevertheless harbour much biodiversity. Headwater streams are the most prevalent 
running water environments, but despite their wide distribution, they are often excluded 
from important freshwater legislation and national monitoring programmes. This thesis 
investigated biodiversity patterns of benthic macroinvertebrates and diatoms in 
headwater streams and the relative importance of local and regional control of 
community structure. Functional redundancy (i.e. the relative resilience) of a headwater 
catchment was also assessed.  

Alpha and beta diversity made significant contributions to the gamma diversity of 
the investigated headwaters. Local control of community structure peaked in first order 
streams and at small spatial extents. Also, biological predictors were able to detect 
additional local control of diatom assemblage structure. Regional control of community 
structure was less consistent, and depended on macroinvertebrate dispersal abilities and 
diatom growth form and size. System-specific spatial variables were also able to detect 
additional regional control of macroinvertebrate assemblage structure. Results indicated 
low functional redundancy, and that community structure within invertebrate functional 
feeding groups was, with a few exceptions, the result of both local and regional control. 

I conclude that we are likely to underestimate biological assets (including both alpha 
and beta diversity) if headwater streams are not included in bioassessment and 
management programmes. The conservation of this diversity is likely to be most 
effective when management targets environmental conditions across multiple local sites 
within relatively small catchments. However, as regional control was detected at both 
small and large spatial scales, it is important to manage regional conditions (e.g. 
landscape connectivity), in addition to local site conditions, irrespective of the scale 
targeted by management. This is especially important because conservation of 
headwater functions (in addition to biodiversity) is likely dependent on both. Finally, 
we can increase the accuracy and performance of predictive models by including 
additional local and regional predictors which are specific to the system and organism 
studied.  
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1 Introduction 
Biodiversity in ecosystems worldwide is decreasing at a faster rate than ever 
before (Heywood, 1995) largely due to human perturbation leading to 
degradation and loss of natural habitats (Millennium Ecosystem Assessment, 
2005). Freshwater habitats cover less than 1% of the Earth’s surface area, but 
contain approximately 10% of all known species (Strayer & Dudgeon, 2010). It 
is estimated that between 10,000 and 20,000 of these species are either extinct 
or seriously threatened, which makes freshwaters one of the most threatened 
ecosystems on earth (IUCN, 2007; Sala et al., 2000). Such great losses in 
species diversity is alarming not only because of ethical reasons, but also 
because it can lead to a decline in ecosystem functioning which sustain 
important ecosystem services to humanity (Balvanera et al., 2006; Chapin III et 
al., 2000; Ehrlich & Ehrlich, 1981).  

Streams and rivers contain just 0.006% of the world’s freshwater 
(Shiklomanov, 1993), but support a high biodiversity (e.g. Allan & Flecker, 
1993). The view that streams are longitudinal systems with linear patterns in 
environmental conditions and biodiversity has dominated since the 
development of the River Continuum Concept (RCC) (Vannote et al., 1980). 
The RCC describes how small, shaded, heterotrophic headwater reaches 
become medium sized, largely autotrophic, reaches which flow into large 
rivers that depend heavily on input of processed organic matters from upstream 
sites. These longitudinal changes in environmental conditions also lead to 
distinct species communities with distinct traits in different parts of the stream 
network. The RCC emphasizes both the aquatic-terrestrial linkage (e.g. 
upstream reaches depend on input of organic matter from riparian vegetation), 
and the importance of longitudinal linkages (e.g. constant supply of organic 
matter from upstream to downstream reaches). Any disruptions in these 
linkages could have consequences for the structure and function of entire 
stream networks. Such disruptions are already widespread, since a majority of 
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the rivers in the world are affected by human activities (Vörösmarty et al., 
2010). This exploitation of stream ecosystems (including habitat degradation, 
water pollution and flow modifications) poses large threats to the biodiversity 
of running waters (Dudgeon et al., 2006; Malmqvist & Rundle, 2002).  

The most prevalent lotic (running water) environments are headwater 
streams (Fig. 1). Headwater (first and second order) reaches can comprise 
~70% of the total stream length in river landscapes (Leopold et al., 1964). In 
Sweden, estimates show that streams with catchments <15 km2 can comprise 
up to 90% of the total stream length (Bishop et al., 2008). The definition of a 
headwater stream is debated, but in the literature it often includes first and 
second order stream reaches (see Fig. 2 for an illustration of stream order 
classification) (Clarke et al., 2008; Gomi et al., 2002; Strahler, 1957). In this 
thesis, the term “headwater stream” or “headwater catchment” also includes 
third order stream reaches (see II, IV), and all streams investigated have 
catchments <10 km2.  

 
Figure 1. Map showing the wide distribution of headwater streams (first-second order stream 
reaches, red lines) compared to higher order streams (> second order stream reaches, blue lines) 
in a randomly selected Swedish catchment (Nätraån).  

Stream order 1-2
Stream order >2
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Headwater streams are not only abundant in the landscape, but also important 
for maintaining the structure and function of entire catchments. As noted 
above, they supply downstream reaches with key components (e.g. organic 
matter and organisms) (Wipfli & Gregovich, 2002) and support unique species 
communities contributing to regional diversity (Meyer et al., 2007). They also 
serve as habitats for species during parts of their life cycle (e.g. spawning sites 
for fish) (Meyer et al., 2007) and can decrease the loading of nutrients to larger 
streams (Peterson et al., 2001).  

Despite this knowledge, headwater streams are often excluded from 
legislation aiming to assess and conserve the ecological status of freshwaters 
across larger regions. For example, in the European Water Framework 
Directive (2000/60/EC), the recommended lower size limit for a water body to 
be included is 10 km2. In Sweden’s national monitoring programme the lower 
size limit is 15 km2, which clearly excludes many upstream reaches in riverine 
landscapes (Bishop et al., 2008). Also, many of the most distant, upstream 
reaches remain unmapped (i.e. not visible on maps with standard resolution) 
(Meyer & Wallace, 2001) and numerous species in these streams are therefore 
likely to be undescribed (Meyer et al., 2007). Thus, we still know relatively 
little about whether headwater streams contain a high diversity that merit 
special conservation initiatives. It is, however, not only important to know 
whether these streams contain a high total (γ) diversity, but also how this 
diversity is distributed in the riverine landscape. That is, we need to move 
away from the linear perspective of streams, where much focus has been on 
longitudinal changes in local (α) diversity along the watercourses, and start to 
acknowledge and assess the importance of regional (β) diversity (Clarke et al., 
2008). This information is crucial to conservation planning since it will help to 
determine at which scale “hot-spots” of biodiversity can be found. To increase 
the likelihood of successful bioassessment and management of headwater 
streams we also need to elucidate which factors regulate this diversity, and on 
what spatial scale they operate (Heino, 2012; Bengtsson, 2010).  

1.1 Local and regional determinants of stream communities 

In this thesis, I use benthic macroinvertebrates and diatoms as study organisms 
because they are key organisms in stream ecosystems and frequently used as 
indicator species in monitoring, bioassessment and management (e.g. Battarbee 
et al., 2010; Wright et al., 1998). In the following two sections, I briefly 
describe local and regional determinants of stream communities and also 
indicate which determinants were assessed in the different papers included as 
part of this thesis. 
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1.1.1 Local determinants 

The effect of local environmental factors on species community structure is 
one of the most studied topics in stream ecology (e.g. Hill et al., 2001; Vinson 
& Hawkins, 1998) and there is no doubt that the distribution of both diatom 
and benthic macroinvertebrate communities are, to some extent, determined by 
factors such as water chemistry (e.g. acidity and nutrients), hydrology (e.g. 
stream flow and discharge), and physical habitat characteristics (e.g. substrate 
composition, stream-width, and shading) (e.g. Heino et al., 2012; Soininen, 
2007; Sandin & Johnson, 2004). Local environmental factors are therefore 
frequently used as predictors in bioassessment programmes (e.g. predictive 
modeling) aiming to assess the ecological status of stream ecosystems (Heino, 
2012). They are also typically the main focus in management and conservation 
programmes. Local environmental control of species community structure was 
assessed in all four papers (I-IV) included in this thesis. 

Local biotic interactions (e.g. trophic interactions and competition) have 
been recognized as important determinants for species community structure 
since the development of the niche concept (Chase & Leibold, 2003) and are 
also known to structure species communities in streams. However, the unique 
effect of biotic interactions on species community structure at large landscape 
scales can be hard to disentangle because they are often mediated by and 
strongly associated with environmental (e.g. Junger & Planas, 1993; 
Mulholland et al., 1986) and spatial factors (Verreydt et al., 2012). One way of 
assessing the structuring effect of trophic interactions on species community 
structure is to use organism groups at one trophic level as predictors of 
community structure at another trophic level, while correcting for both spatial 
and environmental control (e.g. Gray et al., 2012). Diatoms may be useful as 
study organisms for this purpose. First, experimental studies have shown 
significant effects of grazing on diatom community structure (see review by 
Feminella & Hawkins, 1995). Second, diatoms can be divided into functional 
guilds that are thought to respond differently to grazing (Passy, 2007). In paper 
III, we assessed whether biological factors (i.e. macroinvertebrate grazers) can 
explain additional variation in diatom community structure at a relatively large 
spatial scale by doing separate analyses on different diatom guilds with 
different susceptibility to grazing. 

1.1.2 Regional determinants 

It was recognized early on that local species community structure is likely to be 
the result of a hierarchically nested set of structuring factors, suggesting that 
local factors affect only a subset of the species pool which has already been 
subjected to regional factors acting on larger spatial scales (Poff, 1997). Such 
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regional factors do not necessarily have to be of environmental character (e.g. 
large scale climatic variation), but they can also represent spatial determinants 
related to dispersal and connectivity between habitats (Brown et al., 2011; 
Wiens, 2002) (Fig. 2).  

 
Figure 2. Illustration of how local structuring factors (white square) are nested within regional 
constraints (grey square). Regional constrains (e.g. historical, geographical, climatic and dispersal 
related factors) determine which species are available for each local site within a region (i.e. the 
regional species pool). These species are then subjected to different local environmental 
(examples are given in green text) and local biotic factors (examples are given in brown text) 
which ultimately determine the structure of the local species community at any given site. 

Spatial determinants are related to the spatial location of streams within a 
region. Depending on location, streams may be more or less connected to other 
sites within and across catchments which has consequences for species 
movements between sites within a region (Clarke et al., 2008; Wiens, 2002). 
Therefore, spatial control of species community structure is expected to change 
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with the scale of observation (Mykrä et al., 2007) because an increase in the 
spatial extent will lead to the inclusion of increasingly distant sites. Spatial 
control of species communities is also expected to change with dispersal ability 
of the organisms (Brown & Swan, 2010; Thompson & Townsend, 2006) since 
an increased dispersal capacity will increase the likelihood of an organism 
reaching all sites within a region.  

Spatial predictors have been recognised as important determinants of both 
benthic macroinvertebrate (e.g. Brown & Swan, 2010; Mykrä et al., 2007) and 
diatom distributions (e.g. Heino et al., 2010; Verleyen et al., 2009; Soininen, 
2004). In previous research, spatial determinants have mainly been based on 
Euclidian (shortest) distances between sites, representing a proxy for overland 
dispersal (but see Landeiro et al., 2011; Brown & Swan, 2010) (Fig. 3). In 
streams, however, a great deal of dispersal occurs along the watercourses and 
some of this dispersal is largely unidirectional (e.g. drift downstream and flight 
upstream) (Macneale et al., 2005; Petersen et al., 2004; Giller & Malmqvist, 
1998; Kristiansen, 1996) (Fig. 3). To be able to estimate the actual (i.e. total) 
regional control of stream assemblages, it is therefore important to assess 
whether other “system specific” spatial variables (i.e. specific to streams and 
stream organisms) can predict additional variation in species community 
structure. Spatial variables based on Euclidian distances were used to predict 
species community structure in papers II-IV. Spatial variables, based on 
watercourse and downstream directional distances, were used to predict species 
community structure in paper II. 

1.2 Metacommunity theory and its usefulness in stream ecology 

The knowledge that both local and regional factors are important determinants 
for the spatial organisation of stream communities has led to the incorporation 
of ideas from metacommunity ecology into stream ecology (e.g. Brown et al., 
2011). Metacommunity theory emphasises that the structure of species 
communities is the result of regional factors (e.g. landscape connectivity and 
dispersal related mechanisms) in addition to local factors (e.g. environmental 
conditions and biological interactions) (Holyoak et al., 2005; Leibold et al., 
2004). In metacommunity research, systems with an insular structure, 
consisting of habitat patches with discrete boundaries (e.g. rock-pools, ponds, 
moss patches, islands etc) have been the focus of study, even though many 
natural ecosystems (e.g. streams, coral reefs, grasslands) have a fundamentally 
different structure (Logue et al., 2011). Therefore, empirical studies have 
probably failed to assess the dominant metacommunity type in nature. To 
elucidate the metacommunity structure of natural ecosystems may seem 
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interesting only from a theoretical point of view. It can, however, also be of use 
in applied research where the view that species communities are largely under 
local environmental control still prevails (Heino, 2012). Indeed, the need to 
acknowledge dispersal related factors and biotic interactions in applied stream 
research has been emphasised in a number of recent studies (Heino, 2012; 
Brown et al., 2011; Brown & Swan, 2010). 

1.2.1 Metacommunity concepts 

Four metacommunity concepts can be used to describe geographical patterns of 
biodiversity (patch dynamics, neutral dynamics, species sorting and mass-
effects) (Holyoak et al., 2005; Leibold et al., 2004).  

Two of these, species sorting and mass-effects, both assume that there is an 
environmental gradient across sites within a region that species respond to. The 
difference between them is the relative strength of dispersal. The species 
sorting concept assumes that dispersal is moderate (or sufficient enough) so 
that species can track and be sorted along local (e.g. environmental) gradients 
(Holyoak et al., 2005; Leibold et al., 2004). Thus, species sorting will result in 
significant local effects on species community structure (Cottenie, 2005). On 
the other hand, the mass-effect concept assumes that dispersal is strong enough 
to alter species composition in addition to local structuring (Holyoak et al., 
2005; Leibold et al., 2004). High dispersal can, for example, sustain 
maladapted or extinction-prone populations through source-sink dynamics 
(Mouquet & Loreau, 2003; Mouquet & Loreau, 2002). Therefore, mass-effects 
will also result in significant spatial (i.e. regional) structures in species 
communities (Cottenie, 2005).  

By contrast, the neutral and patch dynamic concepts assume that patches are 
similar (i.e. no environmental gradient) and that dispersal is low. The neutral 
paradigm emphasises that community assembly is due to stochastic events, 
including ecological drift (Hubbell, 2001). Note that I also use the term 
“dispersal limitation” in this thesis which refers to spatial effects that stem 
from low (limited) dispersal, compared with mass-effects that originate from 
high dispersal (Ng et al., 2009). Dispersal limitation is not a separate paradigm, 
but rather a key factor in neutral dynamics (Hubbell, 2001) which explains why 
these terms are often used as synonyms in the literature. The patch dynamic 
concept stipulates that empty patches are always available because dispersal is 
too low to compensate for local extinctions. Therefore, species community 
structure is, to a large degree, dictated by biological interactions between and 
the colonisation potential of organisms (i.e. strong dispersers are weak 
competitors and vice versa) (Holyoak et al., 2005; Leibold et al., 2004). When 
patch dynamics or neutrality are at play, species communities are expected to 
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be spatially structured, but unrelated to environmental gradients (Cottenie, 
2005). 

1.2.2 Metacommunity structure in stream networks 

Stream networks have a dendritic structure, which means that they are linearly 
arranged and have a hierarchical structure (Fig. 3). In addition, habitat patches 
have no clearly defined boundaries but are instead continuously linked to each 
other along watercourses. Dispersal can also occur through different pathways 
(Grant et al., 2007). That is, dispersal can occur both along watercourses 
(“within/along-stream dispersal”) and across catchments (“overland dispersal”) 
depending on organism type (e.g. fish compared to winged adult aquatic 
insects) and life cycle stage (e.g. aquatic insect larvae compared to winged 
adult insects) (Fig. 3).  

Environmental heterogeneity in stream networks can be substantial. For 
example, longitudinal changes in environmental conditions from upstream to 
downstream sites include changes in temperature, shading, food-resources, 
flow-regime and substrate composition (Vannote et al., 1980). However, 
environmental conditions can also vary greatly across stream networks (i.e. 
non-longitudinal variation). This variability is known to be especially 
pronounced in headwater areas (Buffam et al., 2007; Temnerud & Bishop, 
2005). This is partly due to the dendritic and hierarchical structure of stream 
networks, which lead to a wider geographical distribution of headwater streams 
compared to downstream sites. Therefore, headwaters flow through a greater 
range of terrestrial environments, giving rise to disparate water chemistry 
and/or hydromorphological conditions (e.g. Buffam et al., 2007) which 
ultimately affects species community composition (e.g. Petrin et al., 2007). 
Strong environmental filtering (i.e. species sorting) is therefore expected in 
headwater areas. 

The wide geographical distribution of headwater streams not only has 
consequences for environmental gradients, but likely also for dispersal. This is 
because dispersal distances between headwater sites are deemed to be, on 
average, longer than those between downstream sites (Clarke et al., 2008) (Fig. 
3). This means that headwater streams may represent relatively isolated 
habitats in terms of dispersal (Brown & Swan, 2010; Clarke et al., 2008). 
Conversely, downstream sites are thought to have a more ‘beneficial’ position 
in stream networks (in terms of dispersal) because (i) substantial dispersal can 
occur from many upstream sites, (ii) they are more connected to other sub-
catchments within the region (via watercourses) due to their position further 
downstream (as discussed by Brown & Swan 2010), and (iii) they are situated 
closer together in space (Clarke et al. 2008) which facilitates dispersal (along 
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all possible pathways) between similar sites. The spatial structuring of species 
communities is therefore expected to increase with an increasing stream order 
due to high dispersal (i.e. mass-effects), whereas dispersal between upstream 
sites is thought to be, at most, moderate or sufficient enough to allow species to 
track environmental gradients (i.e. species sorting) (Brown & Swan, 2010). 
The relative importance of environmental and spatial control of species 
community structure in upstream and downstream sites was assessed in paper 
II. 

 
Figure 3. Illustration of a stream network. Numbers represents different stream orders (1-4). 
Black arrows represent Euclidian distances between two stream reaches (proxy for overland 
dispersal), red arrows represent watercourse distances (proxy for dispersal along the stream 
channels) between two stream reaches, and dotted light and dark blue arrows indicate directional 
downstream and upstream dispersal, respectively. Because first order sites have a wider 
geographical distribution, the distances between them (length of black and red arrows) are 
deemed to be, on average, longer than those between further downstream reaches.  

1.2.3 Headwater biodiversity 

The distinction between different metacommunity concepts is interesting 
simply from a purely theoretical point of view, but what do the differences 
mean in terms of biodiversity patterns? First, there are different, and scale 
dependent, components of biodiversity. Gamma (γ) diversity is defined as the 
total diversity in a region, beta (β) diversity is defined as the diversity between 
localities, and alpha (α) diversity is defined as the diversity within a locality 
(Whittaker, 1972). More precisely, β-diversity is defined as the effective 
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number of distinct communities (stream reaches or catchments) in a region in 
paper I. Metacommunity theory can help us to make predictions about different 
diversity components in any system. For example, high dispersal (mass-effects) 
can lead to higher α-diversity since it may sustain populations that have a 
negative growth rate (Loreau & Mouquet, 1999; Pulliam, 1988). That is, 
without high dispersal rates such populations would go locally extinct. 
However, the similarity between communities on a regional scale may increase 
(i.e. lead to a homogenization of communities and lower β-diversity) with 
increasing levels of dispersal (Mouquet & Loreau, 2003). By contrast, dispersal 
limitation may decrease α-diversity but can lead to a differentiation between 
communities on a regional scale (high β-diversity). For example, speciation (on 
longer time scales) and spatial turnover of species communities (on shorter 
time scales) can be expected to lead to higher β-diversity. Finally, sufficient 
levels of dispersal accompanied with strong environmental gradients (i.e. 
species sorting) is also known to lead to high species turnover (β-diversity) 
(Cottenie & De Meester, 2004; Leibold & Norberg, 2004).  

As discussed in section 1.1.2, headwaters represent relatively isolated 
habitats and the species communities present are likely to be subject to strong 
environmental gradients. We can therefore hypothesize that they are 
characterized by high β-diversity and relatively low α-diversity. In paper I, this 
prediction was tested by partitioning the gamma (γ) diversity (i.e. the total 
diversity in a region) across a set of headwater streams into its α- and β-
diversity components at two spatial scales (within- and supra-catchment scale). 

1.2.4 Ecological resilience  

To conserve biodiversity may seem important only because of ethical and 
moral reasons. However, an assessment of ecosystem function can help to 
determine the ‘value’ of species diversity (Walker, 1992) since human society 
relies heavily on the services provided by ecological systems (Ehrlich & 
Ehrlich, 1981).  

Ecological resilience is most simply defined as the level of disturbance a 
system can tolerate, before it is pushed to an alternative stable state and thereby 
lose its original functions and processes (Holling, 1973). The definition also 
includes a system’s capacity to reorganize during disturbances so that original 
functions and processes are maintained (Walker et al., 2004). One aspect of 
ecological resilience is functional redundancy. Functional redundancy 
describes how many species can go extinct before an entire functional guild 
disappears and function is impaired (e.g. Loreau, 2004). Because organisms 
may perceive their environment at different spatial scales, the hierarchical 
structure of the landscape (i.e. nested levels of structuring variables and 
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processes) is normally also reflected in the organization of species 
communities (Holling, 1992). Therefore, it has been recognized that functional 
redundancy exists, and should preferably be assessed, both within and across 
such spatial scales (Allen et al., 2005; Peterson et al., 1998). In paper IV, we 
estimated functional redundancy in a headwater catchment within and across 
spatial scales. 

Another important aspect of ecological resilience is response diversity. 
Response diversity refers to whether functionally similar species respond 
differently to disturbances (Elmqvist et al., 2003). Because disturbances are 
often related to environmental degradation, research has focused mainly on 
differences in species responses to local environmental change (Elmqvist et al., 
2003). In paper IV, however, we assessed the importance of both 
environmental and spatial factors for structuring taxonomic composition within 
functional groups and spatial scales. 
  



22 

 
 

 
 



23 

2 Objectives of the thesis 
The overall objective of this thesis was to increase our understanding of 
biodiversity patterns in headwater streams and investigate what factors regulate 
community composition in these systems. The specific objectives were to 
investigate the following: 

 
1. The relative contribution of α- and β-diversity to γ-diversity in headwater 

streams (I) 
 

2. The importance of different local (environmental and/or biotic) and regional 
factors (proxies for overland and/or watercourse and/or directional 
dispersal) controlling community composition in headwater streams (I-IV) 
 

3. Whether the relative importance of local and regional control of community 
structure depends on organism traits (macroinvertebrate dispersal ability, 
diatom growth-form and size) (II-III) 
 

4. Whether the relative importance of local and regional control of community 
structure differs between upstream (first order) and downstream (second 
and third order) sites (II) 

 
5. The degree of functional redundancy within and across spatial scales in a 

headwater catchment and the relative importance of local vs. regional 
factors controlling taxonomic composition within each functional group and 
spatial scale (IV) 
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3 Materials and methods 

3.1 Study catchments 

All study catchments included in this thesis (Krycklan, Dalälven, Danshytteån 
and Lugnån) are located in the boreal region of Sweden (Fig. 4). All sampled 
sub-catchments are dominated by forests while the remaining parts consist 
mainly of wetlands and lakes. The amount of agricultural land in each sub-
catchment is small (<10%) as well as the amount of recent forestry activities 
(amount of clear-cuts <26%).  

3.2 Sampling of biota and local environmental variables 

3.2.1 Dalälven catchment (I, III) 

In total, 30 riffle-sites were selected in the Dalälven catchment. At each riffle-
site, a 50 m long representative stretch was selected for habitat 
characterization, benthic macroinvertebrate, diatom, and water sampling. All 
sampled sites in the Dalälven catchment were used in paper III. The Dalälven 
catchment consists of three smaller subcatchments (Österdalälven [OD], 
Västerdalälven [VD] and the Lower Branch of River Dalälven [LB]). Six 
randomly selected sites within each sub-catchment were used in paper I.  

Benthic macroinvertebrates were sampled with a Surber sampler (14×14 
cm) and a total area of ~0.30 m2 site-1 was sampled. Diatoms were sampled 
according to the European/Swedish standard method (SS-EN 13946; CEN 
2003). Stream width, stream depth, flow and canopy cover (shading) was 
measured and the number of items of coarse and fine dead wood was counted 
at each site. Water samples were analysed for major anions and cations, total 
organic carbon (TOC), pH, alkalinity, total phosphorous (Tot-P), total nitrogen 
(Tot-N), and water colour (absorbance at 420 nm). 
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Figure 4. Location of the four study sites (Krycklan, Dalälven, Lugnån and Danshytteån 
catchment) in Sweden. 

3.2.2 Danshytteån and Lugnån catchments (III) 

Six sites were selected in each catchment. The selection of sites was restricted 
to first and second order stream reaches. At each site a 10 m representative 
stretch was selected for habitat characterization, macroinvertebrate, diatom and 
water sampling.  

Benthic macroinvertebrates were sampled with a Surber sampler (25×25 
cm) and a total area of ~0.30 m2 site-1 was sampled. Diatoms were collected 
according to the European/Swedish standard method (SS-EN 13946; CEN 
2003). Stream width and depth was measured at each site and water samples 
were analysed for pH, Tot-N, Tot-P, TOC and water colour.  
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3.2.3 Krycklan catchment (II, IV) 

In total, 52 sampling sites were selected in the Krycklan catchment. Of these, 
30 were first order sites (upstream sites) and 22 were second-third order sites 
(downstream sites). Upstream sites did not have a stream node (confluence) 
situated upstream, while downstream sites were always situated below at least 
one node. Stream-order groups were analysed separately in paper II. In each 
stream segment, at least two sites were sampled to assess the importance of 
directional downstream processes (see section 3.3.2). At each site a 30 m 
representative stretch was selected for macroinvertebrate and water sampling, 
and habitat characterization.  

Benthic macroinvertebrates were sampled with a Surber sampler (14×14 
cm) and a total area of ~0.18 m2 site-1 was sampled. Stream width, stream 
depth, flow, canopy cover (shading), substratum composition and moss-cover 
was measured and the number of items of dead wood was counted at each site. 
A drought inventory of the sites during the warmest period of the summer was 
also performed. Water samples were analysed for major anions and cations, 
metals (Fe, Al), pH, Tot-N, Tot-P, CO2, NO2+NO3, water colour, and TOC.  

3.3 Description of data 

3.3.1 Species data 

Diatoms and macroinvertebrates were identified to the lowest possible 
taxonomic level. Normally individuals were identified to species or genus 
level, with the exception of e.g. Simuliidae (identified to family level), 
Chironomidae (identified to subfamily level) and Coleoptera (identified to 
family level). Thus, species (response) matrices consisted of site and taxon 
specific abundance data of the organism group of interest. In papers II-IV, the 
response data was further divided into groups of taxa with different traits. 

Dispersal ability groups (II) 
In paper II, the species data was divided into groups of macroinvertebrates with 
different dispersal abilities following Poff et al. (2006). We focused on three 
different types of dispersal (drifting propensity [DP], adult flying strength 
[AFS] and female dispersal [FD]) and assigned taxa to one of three dispersal 
ability groups: (1) no (only DP), (2) low and (3) high dispersal ability. No DP 
are genera that rarely occur in drift samples (i.e. mainly found during 
catastrophic drift), low DP are genera that commonly occur in drift samples, 
and high DP are genera that are dominant in drift samples. Low FD are genera 
that fly <1 km before laying eggs, and high FD are genera that can fly >1 km 
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before laying eggs. Low AFS are genera that cannot fly into light breeze (weak 
flyers), and high AFS are genera that can fly into light breeze (strong flyers). 

Diatom growth-form and size (III) 
In paper III, diatom taxa were divided into different growth-form (low, high, 
motile) and size (small or large) guilds. Species within the low-growth guild 
grow in the boundary layer of the biofilm, close to the substrate (Passy, 2007). 
The high-growing guild includes species that can grow above the boundary 
layer of the biofilm and species within the motile guild can actively move 
relatively fast (Passy, 2007). Species within the small guild have a length of 
single cells ≤ 15 µm, and a volume of single cells ≤ 100 µm3, while species 
within the large guild have a length of single cells > 15 µm, and a volume of 
single cells > 100 µm3. 

Functional feeding groups (IV) 
In paper IV, the species data was divided into macroinvertebrate functional 
feeding groups (FFGs) (scrapers, filterer-collectors, gatherer-collectors, 
predators, and shredders) (Merritt & Cummins, 1996; Moog, 1995). Scrapers 
scrape material from organic and mineral surfaces (mainly feeding on biofilm 
and attached algae), filterer-collectors filter suspended material in the water 
(mainly feeding on fine particulate organic matter), gatherer-collectors collect 
their food from sediment or loose surface films (mainly feeding on fine 
particulate organic matter and/or biofilm), predators feed on other animals, and 
shredders chew and feed on coarse particulate organic matter (Merritt & 
Cummins, 1996). 

3.3.2 Explanatory data 

Environmental predictors (I-IV) 
The environmental predictor matrix consisted of all relevant local 
environmental variables measured in each study. The environmental variables 
were always checked for normality and log or square-root transformed when 
necessary.  

Biotic predictors (III) 
The biotic predictor matrix consisted of site-specific abundance data of 
macroinvertebrates known to feed on diatoms (grazer-collectors) (Lancaster et 
al., 1996; Merritt & Cummins, 1996; Moog, 1995). Taxa within the grazer-
collector guild were grouped into orders (Ephemeroptera, Trichoptera, 
Plectoptera and Coleoptera) and Hellinger transformed prior to statistical 
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analyses. The Hellinger transformation makes data that contain many zeros 
suitable for linear methods (e.g. redundancy analysis [RDA]) (Legendre & 
Gallagher, 2001). 

Spatial predictors (II- IV) 
All data analyses used to calculate spatial predictors were performed in R (R 
Development Core Team, 2011). Principal Coordinates of Neighbour Matrices 
(PCNM) analysis (Borcard et al., 2004; Borcard & Legendre, 2002) was used 
to create spatial predictor variables based on Euclidian distances and 
watercourse distances. Euclidian distances represent the shortest distance 
between each pair of sites and can therefore be viewed as a proxy for overland 
dispersal. Watercourse distances represent the distance between each pair of 
sites following the stream channel and can therefore be viewed as a proxy for 
dispersal occurring along the watercourses. The PCNM analysis creates a 
number of spatial variables (PCNMs) with different sine wave frequencies. The 
first PCNMs represent sine waves with low frequencies and are therefore 
associated with broad scale spatial patterns, while subsequent PCNMs 
represent increasingly higher frequencies and are associated with spatial 
patterns in species distributions at smaller scales. PCNMs based on Euclidian 
distances (DO, S) were used to predict species community structure in papers 
II-IV, and PCNMs based on watercourse distances (DW) were used in paper II. 

To assess directional spatial processes, Asymmetric Eigenvector Maps 
(AEM) analysis was used (Blanchet et al., 2008). A binary connection diagram 
(showing how streams were connected in a downstream direction) and weights 
(based on the geographic distance of each connection) were used to model 
directional eigenvectors (AEMD) (Blanchet et al., 2008). These predictor 
variables can be viewed as a proxy for downstream directional dispersal and 
were used as predictors of macroinvertebrate community structure in paper II.  

3.4 Statistical analyses 

All statistical analyses described below were performed in R (R Development 
Core Team, 2011). Only the methods that are relevant to the main and specific 
aims of the thesis are described here. For a description of other statistical 
analyses used, see descriptions in the individual papers. 

3.4.1 Assessing γ-, α- and β-diversity (I) 

In paper I, the γ-diversity of diatoms and macroinvertebrates was partitioned 
into its α- and β-diversity components at two different spatial scales (within- 
and supra-catchment level). This was done by using the multiplicative 



30 

partitioning method by Jost (2007). In this method, α is the average value of 
the diversity index (number equivalents) of the samples, β is the effective 
number of distinct communities (reaches at the within-catchment scale and 
catchments at the supra-catchment scale), and γ is the total diversity (α×β) of 
the region analyzed (Jost, 2007). 

3.4.2 Local and regional control of species communities  (I-IV) 

In paper I, local environmental control of macroinvertebrate and diatom 
community structure was assessed by using an approach (bioenv) which finds 
the best subset of environmental variables representing the maximum 
(Spearman rank) correlation between species community dissimilarities (here 
based on Bray-Curtis index) and environmental dissimilarity (here based on 
Euclidian distances) (Clarke & Ainsworth, 1993). 

In papers II-IV, redundancy analysis (RDA) (Legendre & Legendre, 1998) 
was used to assess the relative importance of local versus regional control of 
species communities. Species (response) data was always Hellinger 
transformed prior to statistical analyses to make it suitable for RDA (Legendre 
& Gallagher, 2001). First, explanatory variables (environmental, spatial and/or 
biotic) were selected with a forward selection procedure (Dray, 2009). 
Variables that were significantly related to species community structure 
(p<0.05) were then compiled into explanatory matrices (environmental, biotic, 
and spatial) for further analyses. The relative amount of variation in species 
community structure that could be explained by each explanatory matrix was 
assessed through variance partitioning analysis (Legendre & Legendre, 1998; 
Borcard et al., 1992). Variance partitioning analysis uses partial redundancy 
analysis (pRDA) to calculate how much of the variance in species community 
structure that can be explained uniquely by each explanatory matrix after 
removing the effects of all other explanatory matrices (covariables). The 
fraction explained jointly by explanatory matrices (shared variance) and the 
unexplained variation was also calculated. The significance of each testable 
fraction in the variance partitioning analysis was obtained by permutation tests 
(Oksanen et al., 2011). These analyses were performed in the same way for 
each stream-order group (II), macroinvertebrate dispersal ability group (II), 
diatom growth-form and size guild (III) and each functional feeding group 
associated with each spatial scale (IV).  
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4 Results and Discussion 

4.1 Diversity in headwater streams (I) 

The total (γ) richness in the five catchments was 111 benthic macroinvertebrate 
taxa and 271 diatom taxa. This value is lower than what has been recorded over 
larger spatial scales and in larger streams. For example, Heino & Soininen 
(2007) found 153 invertebrate taxa and 364 diatom taxa in seven catchments 
across whole Finland, and Stendera & Johnson (2005) found 175 invertebrate 
taxa in the most taxon rich ecoregion in Sweden. Our estimate of total 
macroinvertebrate richness is, however, in the upper range (or higher) of what 
has been recorded in other studies that have included similar stream sizes as we 
(Clarke et al., 2010; Clarke et al., 2008).  

Alpha diversity made a significant contribution to the total (γ) diversity in 
the headwater streams included in this study. We estimated that, on average, 
48% of the total macroinvertebrate taxon richness, and 73% of the total 
macroinvertebrate Shannon diversity, could be found in local stream reaches 
within each catchment. For diatoms, that same estimate was 34% of the total 
richness and 44% of the total Shannon diversity. 

β-diversity was also relatively high. On average, 35% of the stream reaches 
within each catchment comprised distinct macroinvertebrate communities 
when partitioning was based on taxon richness, with a corresponding average 
turnover rate per stream reach of 0.22. Diatom β-diversity was consistently 
higher compared to macroinvertebrate β-diversity. On average, 48% of the 
stream reaches comprised distinct diatom communities when partitioning was 
based on taxon richness, with a corresponding turnover rate per stream reach of 
0.38. β-diversity was lower for both organism groups when partitioning was 
based on Shannon index, suggesting that a high occurrence of rare taxa 
(‘unique’ to individual sites and catchments) contributed to the observed β-
diversity patterns. The occurrence of a high number of ‘unique’ taxa in 
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headwater streams has been observed also in previous studies (Danehy et al., 
2007). That β-diversity was relatively high is in line with the findings from a 
global study by Finn et al. (2011) who found higher taxonomical (and genetic) 
β-diversity in low order streams (first to second order reaches) in comparison 
to higher order streams (third to fourth order reaches). Our estimates of the 
relative contribution of α- and β-diversity to γ-diversity is also similar to what 
was found in a study of first order stream reaches in Australia (Clarke et al., 
2010). 

4.2 Local and regional control of species communities (I-IV) 

Local environmental factors were consistently related to macroinvertebrate and 
diatom community structure in all papers included in this thesis. That is, even 
though the magnitude of local control (i.e. the amount of variance explained) 
varied in our analyses, environmental factors were, in most cases, significantly 
related to community structure (I-IV). Thus, species communities in the 
headwater streams included in this study are clearly subject to some degree of 
environmental filtering (species sorting) which is consistent with previous 
studies (e.g. Heino et al., 2012; Heino & Mykrä, 2008). However, 
environmental control peaked at small spatial extents (I) and in upstream sites 
(II), emphasizing that local control is scale dependent (Mykrä et al., 2007) and 
dependent on stream-order type (see section 4.2.3). A unique (and additional) 
fraction of the variation in diatom community structure could also be explained 
by local biological predictors (macroinvertebrate grazer abundances) (III). 
However, the detection of a significant biological relationship between grazer 
abundances and diatom community structure was dependent on diatom growth 
form and size (see section 4.2.2).  

Regional (spatial) factors also predicted unique and significant fractions of 
macroinvertebrate and diatom community structure, over both large (III) and 
small (II, IV) spatial extents, but were less consistently related to community 
structure compared to environmental factors. For example, the detection of a 
significant relationship between spatial factors and community structure was 
dependent on macroinvertebrate dispersal capacity (see section 4.2.1), diatom 
growth form and size (see section 4.2.2) and the spatial location of sampling 
sites in the stream network (i.e. stream order) (see section 4.2.3). Further, all 
spatial variables used in paper II could explain unique and significant portions 
of macroinvertebrate community structure. In general, however, spatial 
predictors based on Euclidian (DO) and downstream directional distances 
(AEMD) were more consistently related to community structure compared to 
those based on watercourse distances (DW) (II). This suggests that DO and 
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AEMD may be better predictors of macroinvertebrate distributions compared to 
DW, whereas DW may instead be more suitable for predicting the distribution of 
species that are more restricted to the stream channel (e.g. fish) (Landeiro et 
al., 2011). 

4.2.1 Macroinvertebrate dispersal capacity (II) 

In agreement with previous studies (e.g. Brown & Swan, 2010; Thompson & 
Townsend, 2006), our analyses of macroinvertebrate dispersal capacity groups 
showed changes in the degree of spatial structuring between low and high 
dispersal communities (II, Table 1a-b). That spatial structuring changed with 
dispersal capacity of organisms at a small spatial extent (minimizing the effect 
of other regional determinants) suggests that the unique spatial structures found 
are likely to be the result of dispersal related factors. Interestingly, spatial 
structuring of macroinvertebrates during spring decreased with increasing 
dispersal capacity for spatial variables based on Euclidian and watercourse 
distances (DO and DW), but increased with an increasing dispersal capacity for 
our spatial variables based on directional downstream distances (AEMD) (II, 
Table 1a-b). Although the results were not consistent between seasons, this 
finding indicates that both dispersal limitation and mass-effects can occur 
simultaneously, but through different dispersal pathways. That dispersal 
limitation can be evident at this small spatial scale could be dependent on the 
stream type investigated. Some of our sites were intermittent and species may 
have to constantly recolonize these areas. Species with low dispersal abilities 
may therefore not have enough time to establish at all sites. As pointed out by 
Townsend (1989), mass-effects may also be evident through, for example, high 
downstream dispersal (drift) of abundant species present in, and adapted to, 
environmental conditions in upstream areas. This finding also deviates from 
what is expected for more commonly investigated systems in metacommunity 
research, that often have a more insular structure (e.g. ponds, rock-pools and 
islands) and therefore fewer potential dispersal pathways. 

4.2.2 Diatom growth-form and size (III) 

Environmental control of diatom assemblage structure was consistently high. 
The detection of a significant biological relationship between grazer abundance 
and diatom assemblage structure was, however, dependent on diatom growth-
form and size. That is, biotic factors explained a significant portion of diatom 
taxonomic composition within all guilds, except within the motile and large-
sized guild (Fig. 5). Results from previous experimental studies provide some 
support of this finding. For example, grazers have been shown to frequently 
ingest diatoms growing in the upper layer of the biofilm, decreasing their 
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abundance (Hill & Knight, 1988; Hill & Knight, 1987). Diatom species 
growing closer to the substrate may instead increase in abundance (Hill & 
Knight, 1987), probably due to release from competition. Moreover, motile 
diatoms have been shown to be less selectively grazed compared to other 
guilds (Tuchman & Stevenson, 1991). It is important to note, however, that our 
analysis does not allow us to determine mechanistic causes behind the 
observed patterns. Despite this limitation, the biotic predictor matrix could 
explain additional variation in diatom community structure, most likely 
reflecting the detection of additional local control. This finding is consistent 
with results from previous studies in both lakes (Gray et al., 2012) and streams 
(Johnson & Hering, 2010).  

Pure spatial gradients (regional effects) were also dependent on diatom 
growth-form and size. Significant spatial structures were evident in all diatom 
guilds, except the motile and large-sized guild (Fig. 5). Because very little is 
known about diatom dispersal, we can only speculate about the underlying 
mechanism behind this finding. However, we do not exclude the possibility 
that it could reflect differences in diatom dispersal capacity. For example, it 
has been suggested that locally abundant species are also globally abundant 
and therefore represent taxa that are more easily/frequently dispersed, while the 
opposite would be true for locally rare species (Soininen & Heino, 2005; 
Finlay et al., 2002). In our study, the motile and large-sized guild generally 
comprised taxa with lower abundances in comparison with the small-sized, 
high- and low-growth guild. Interestingly, size has been suggested to be a 
possible important trait which may influence diatom dispersal capacity (Heino 
& Soininen, 2006; Kristiansen, 1996).  
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Figure 5. Venn-diagrams showing the unique fraction of taxonomic composition explained (i.e. % 
fraction explained/ % total variance explained) by environmental (environment), spatial (space) 
and biotic (biotic) factors (III). Diagrams show variances explained of a) total diatom assemblage 
structure (i.e. all taxa were analyzed together) and of taxonomic composition within the b) high-
growth, c) low-growth, d) motile, e) small-sized, and f) large-sized diatom guild. The significance 
of each fraction explained is indicated in the figures (** p<0.01, * p<0.05, ˙ p<0.10). Shown is 
also the variance explained jointly by all three explanatory matrices, environmental and biotic 
factors, biotic and spatial factors, and environmental and spatial factors (overlapping parts of the 
circles). The number of replicates (n) is 30 in all analyses. The percentage of total explained 
variance in each analysis is reported in the lower right hand corner.  
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4.2.3 Upstream vs. downstream sites (II) 

Macroinvertebrate community structure in upstream sites was more 
consistently and strongly related to environmental factors compared to 
downstream sites in both spring and autumn. However, the difference was 
more pronounced during spring when environmental factors explained 22% 
(p<0.01) and 7% (p<0.1) of community structure in upstream and downstream 
sites, respectively (Fig. 6). In autumn, spatial variables based on downstream 
directional distances (AEMD) explained 5% of community structure in 
upstream sites. However, after removing the effect of AEMD, upstream sites 
were completely unrelated to spatial variables based on Euclidian (DO) and 
watercourse distances (DW) in both spring and autumn (Fig. 6). This is 
consistent with a previous study, covering a larger spatial scale, where no 
significant relationship was found between overland or watercourse distances 
and species community dissimilarity in first order streams (Brown & Swan, 
2010).  

Downstream sites showed less consistent patterns. In spring, neither 
environmental nor spatial factors could explain unique and significant fractions 
of macroinvertebrate community structure. In autumn, however, both 
environmental and spatial factors explained some fraction of community 
structure (E: 16%, DO: 5%, AEMD: 6%) (Fig. 6). The autumn result agreed 
with our predictions and is also consistent with a previous study suggesting 
that mass-effects prevail in downstream sites (Brown & Swan, 2010). The 
spring result was puzzling but could be explained by the stronger spatial 
structuring of macroinvertebrate communities at the whole network scale 
during spring (i.e. all spatial factors were significant) (Fig. 6). This finding 
suggests that dispersal may be pronounced at this time of year. For example, 
high flows associated with spring flood can mediate downstream drift (e.g. 
Waringer, 1992). Also, many common stoneflies in our study hatch during 
spring and aerial dispersal along the watercourses may be pronounced 
(Macneale et al., 2005; Petersen et al., 1999). It is therefore likely that high 
dispersal may have masked both environmental and spatial signals in our 
downstream sites during spring, while moderate dispersal coupled with strong 
environmental gradients caused species sorting dynamics to prevail in the more 
isolated upstream sites.  
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Figure 6. Results of the variance partitioning analyses between explanatory variables and the 
species data (II). The figure shows the amount of variation (%) in the species data explained by 
local environmental variables (E), Euclidian distance eigenvectors (DO), watercourse distance 
eigenvectors (DW) and downstream directional eigenvectors (AEMD). The unexplained variation 
and the total shared variation (i.e. the sum of all pairwise shared components + the shared 
variation explained between all four explanatory matrices). The tests are divided by season 
(spring vs. autumn) and hierarchical levels (i.e. whole network scale vs. upstream (order I) vs. 
downstream (order II-III) sites). The level of significance is indicated next to the bars (** p<0.01, 
* p<0.05, ˙ p<0.10). The figure is reproduced from Göthe et al. (2013). 

4.2.4 Functional redundancy (IV) 

Our results indicated low relative resilience of the Krycklan catchment. First, 
our analysis identified a low number of significant spatial scales (two-three) in 
each season (Fig. 7). Second, few taxa were, on average, present within each 
functional group and scale (mean number of taxa per functional group <2). 
Some taxa (occurring in low abundances) were, however, unrelated to the 
spatial scales detected and could therefore not be included in the functional 
redundancy assessment within and across scales. It is important to 
acknowledge that such numerically rare species may contribute to the 
resilience of ecosystems if they respond differently to disturbances compared 
to functionally similar dominant species (Walker et al., 1999). The relative 
resilience of this headwater catchment may therefore be underestimated.  

Despite this limitation, our results clearly showed that community structure 
within macroinvertebrate functional feeding groups (at all spatial scales) was, 
with a few exceptions, structured by a combination of environmental and 

0

20

40

60

80

100

OrderI Order II-III Order I Order II-III

Unexplained Total shared AEMD DW DO E

**

**
**
*

** **
**

**

*
*
*

**
Va

ria
nc

e 
ex

pl
ai

ne
d 

(%
)

Spring Autumn

.

Network
scale

Network
scale



38 

spatial factors (Fig. 7). This suggests that functionally similar taxa not only 
differ in their response to local factors, but also to regional factors.   

 
Figure 7. Results of the variance partitioning analyses. The figure shows the amount of variance 
in taxonomic composition within each functional group explained (%) by local environmental 
factors (E) and spatial eigenvectors (S) (IV). Shown are also variances explained jointly by 
environmental and spatial factors (E∩S) and unexplained variation (U). X indicates that no taxa 
were associated with that particular scale and FFG. S = Shredder, F = Filterer-Collector, P = 
Predator and GC = Gathering-Collector. The tests are divided by season (spring vs. autumn) and 
spatial scale (RDA1, RDA2, and RDA3). The level of significance is indicated next to the bars 
(** p<0.01, * p<0.05, ˙ p<0.10, ns p>0.10). 
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5 Conclusions 
 
 Both α- and β-diversity contributed significantly to γ-diversity in the 

headwater streams included in our assessment (I). No simple conclusion, 
based on this result, can be drawn considering whether we can conserve 
most of this biodiversity by preserving a few local sites, or if we have to 
conserve many sites with different species communities. Nevertheless, the 
results suggest that we are likely to exclude a significant amount of 
biodiversity by not considering them in bioassessment and management. To 
elucidate the contribution of headwater stream biodiversity to the total 
diversity in riverine landscapes, future assessments should also include 
other stream-types (i.e. downstream reaches) within the same catchments. 
 

 Local environmental control increased with decreasing spatial extent (I) 
suggesting that conservation of headwater biodiversity is likely to be most 
effective when management targets environmental conditions across 
multiple local sites within relatively small catchments.  
 

 Local environmental control peaked in the most upstream sites (II), most 
likely due to greater environmental variation and an increased isolation in 
terms of dispersal. Different stream-types may therefore differ in their 
sensitivity to environmental change and ability to recover after 
disturbances. If upstream species communities are more isolated, their 
recovery may be substantially slower compared to downstream reaches 
where high dispersal can potentially mitigate the negative effects of local 
disturbances. However, future studies are needed to assess the generality of 
our findings since the study was performed over a limited spatial scale and 
only in one catchment. 
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 Additional variation in diatom assemblage structure could be explained by 
including biotic predictors (III), reflecting the importance of local control. 
The accuracy of predictive models is therefore likely to increase by 
including biotic predictors. Our results also suggest that guilds vary in their 
response to spatial and biological factors and that guild-specific 
management approaches may be required. Our approach does not, however, 
allow us to assess the underlying cause(s) of the observed differences. 
Therefore, small scale experiments with controlled manipulations of diatom 
dispersal, environmental conditions and grazing pressure could be used to 
shed light on some of the underlying mechanisms behind our results. 

 
 Spatial factors explained significant fractions of community structure over 

both large (III) and small (II, IV) spatial extents. This suggests that 
bioassessment will not improve substantially by using predictive models 
based on small geographical areas (e.g. within catchments or bioregions). 
That is, it may be important to incorporate spatial factors in predictive 
models irrespective of the spatial scale of observation. This finding also 
emphasizes the importance of managing regional conditions (e.g. landscape 
connectivity), in addition to local site conditions, irrespective of the scale 
targeted by management. 
 

 Spatial factors differed in their ability to predict macroinvertebrate 
community structure (II) which emphasizes the importance of using spatial 
predictors that are specific and relevant to the system and organism studied. 
However, we have not assessed all relevant spatial determinants in the 
studies herein. Although downstream directional dispersal is important in 
stream networks, much dispersal is also directed upstream (e.g. adult 
macroinvertebrates). In addition, landscape characteristics may significantly 
influence dispersal processes in streams (e.g. steep slopes, land cover). 
Therefore, the use of available spatial modeling techniques that can assess 
directional spatial structures, as well as incorporate landscape 
characteristics, are likely to improve the results further. 

 
 Taxonomic composition within macroinvertebrate FFGs was, in most cases, 

the result of both local and regional control (IV). Therefore, the 
maintenance of headwater functions most likely requires management of 
both local and regional conditions. Moreover, studies of important 
resilience components, such as response diversity, should consider 
differences in organism responses not only to local disturbance regimes, but 
also to spatial gradients (e.g. organism dispersal capacity).  
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