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1. Preface 
 
This introductory paper is part of my PhD project: “Host shift induced speciation in gall midges”. 

The project is conducted at the Swedish University of Agricultural Sciences (Alnarp), department 

of Plant Protection Biology, division of Chemical Ecology. The project is part of IC-E3, 

supported by a Linnaeus Grant (Formas, Sweden). My supervisors are Ylva Hillbur, Bill S. 

Hansson and Göran Birgersson. The first part of this paper is a general overview of evolution and 

speciation. This is followed by a more detailed part about insects and their speciation. At the end 

of the paper the gall midges (Diptera: Cecidomyiidae) are introduced.  

 

2. Summary 
 

Charles Darwin is the father of evolution as we know it today. In his book “The origin of 

species” he states that new species originate from ancestral species that change over time, and 

that the mechanism of the change is natural selection. How the variation natural selection need is 

generated and passed from generation to generation was solved by Gregor Mendel and Thomas 

Hunt Morgans (and his group). Based on experiments with pea plants, Mendel formed laws about 

segregation and assortment of traits and Morgans group demonstrated that Mendels hypothetical 

factors are specific points on the chromosome.  

 

Evolution mostly deals with how populations become adapted to their environment, but not how 

this adaption leads to speciation. For speciation to occur, barriers for the gene flow between 

populations have to evolve. There are two general modes of speciation defined by how the gene 

flow between populations is interrupted. In allopatric speciation a physically barrier isolates a 

population, whereas sympatric speciation occur within a single geographical area and 

reproductive isolation arises between individuals that always have the opportunity to interbreed.  

 

Insects are good models when the mechanisms underling evolution and speciation are studied, 

there are more than one million species and their diversity and distribution is amazing. Olfaction 

is the primary sense by which the environment is interpreted by insects, and olfactory cues can be  
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important for separation of population evolving in sympatry. That was demonstrated by Löfstedt 

and co-workers who studied nine species of sympatric ermine moth Yponomeuta. All species had 

a mixture of (E)-11 and (Z)-11 tetradecenyl acetate as primary pheromone compounds, however, 

the females produced the compounds in a specific ratios that never overlapped if the species were 

not isolated by other barriers. 

 

Pheromones are well studied compared to the plant-produced odors. However, insects can detect 

relevant plant odors with the same selectivity and sensitivity as they detect pheromones.  The 

number of volatiles emitted from fruit and plants is much higher than the number of components 

in the female pheromone, yet, Stensmyr et al. (2003) demonstrated that Drosophila melanogaster 

only needs a few key components to locate and detect a food source.  

 

The Rhagoletis pomonella sibling species complex is a model system for sympatric host race 

formation and speciation (e.g. Forbes et al., 2005; Linn et al., 2003; Linn et al., 2005b). The 

complex consists of several strains with different host preference – a preference based on 

olfactory cues. Host choice is of evolutionary significance for Rhagoletis as they mate on or near 

the fruit of their respective host plant. Adult flies tend to mate on or near the same species of host 

fruit as the one they infested as larvae. Thus, differences in host preferences can translate into 

mate choice and can act as pre-mating barriers to gene flow. 

  

As for other insects, gall midge behavior has been shown to be guided by olfactory cues; they use 

pheromones when locating a suitable mate and plant volatiles for host plant recognition. Thus, 

host plant volatiles might be important when gall midges shift between hosts and subsequently in 

the formation of new gall midge species. In my thesis I will study possible evolutionary 

mechanisms behind the great diversity of the gall midges. The two main questions I will address 

in my thesis are: do gall midges associated with the same host plant use the same or a similar set 

of odors to identify it? And, conversely, do closely related species that have different host plant 

requirements respond to odors common for the different plants? 
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3. Evolution  
 
Evolution is one of the most unifying concepts in biology, as any aspect of an organism – from 

mating behaviour to the mode of photosynthesis or a mutation in a gene – can be explained from 

an evolutionary perspective (Grimaldi and Engel, 2005).  

 

3.1 The ideas 
 
Charles Darwin (1809-1882) is the father of evolution as we know it today (Campbell et al., 

1999a; Horan, 2006). His book “The origin of species” is the basis for modern evolution and 

speciation theories. Darwin proposed that new species originate from ancestral species that 

change over time. He added the mechanism of evolutionary change – natural selection (Freeman 

and Herron, 2004; Grimaldi and Engel, 2005). Alfred R. Wallace (1823-1913) had the ideas 

independent of Darwin, and was co-author with Darwin on the original paper proposing natural 

selection as the mechanism behind evolution (Freeman and Herron, 2004; Grimaldi and Engel, 

2005). 

  

Darwin’s theory is based on four postulates from the introduction to “The Origin of species” 

(Table 1; Darwin, 1859). Darwin regarded life in nature as a competition, where the fittest 

individuals win. The fitness of an individual refers to how well it survives and reproduces 

compared to other individuals in the population. Traits that increase the fitness of an organism 

relative to individuals without those traits makes it better adapted (Campbell et al., 1999a; 

Freeman and Herron, 2004). However, Darwin could not explain how variation was passed from 

generation to generation and how it was generated. That was solved by Gregor Mendel (1822-

1884) and Thomas Hunt Morgan’s (1866-1945) group at Columbia University. Based on 

experiments with pea plants, Mendel formed laws about segregation and assortment of traits 

(Freeman and Herron, 2004; Grimaldi and Engel, 2005) and Morgan’s group demonstrated that 

Mendel’s hypothetical factors are specific points on the chromosome (Allen, 1985a; Allen, 

1985b). 
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Table 1. Darwin’s original postulates about evolution as stated in “the Origin of species” and the postulates re-stated 
after the Modern Synthesis (Freeman and Herron, 2004). 
 

 

In the 1920s Darwinian selection and Mendelian inheritance were integrated into the Modern 

Evolutionary Synthesis by Dobzhansky, Mayr, Simpson and Stebbins (Campbell et al., 1999b; 

Grimaldi and Engel, 2005; Freeman and Herron, 2004; Table 1). The synthesis emphasizes the 

importance of populations as the unit of evolution; it states that mutations are the source of raw 

material for evolutionary change, that natural selection is the most important mechanism of 

evolution, and that large changes can evolve as accumulation of small changes occurring over 

long periods of time.  

 
The classical Darwinian theories and the Modern Synthesis are now challenged, but these 

theories have shaped most current ideas about evolution.  

 

Darwin’s postulates in the  “the Origin of species” 
 

Re-statement after the Modern Synthesis  

 

1. Individuals within populations are variable 

 

1. As a result of mutations creating new 

alleles, and segregation and independent 

assortment shuffling alleles into new 

combinations, individuals within populations 

are variable for many traits 

 

2. The variations among individuals are, at least in 

part, passed from parents to offspring 

 

2. Individuals pass their alleles to their 

offspring intact 

3. In every generation, some individuals are more 

successful at surviving and reproducing than others 

 

3. In every generation, some individuals are 

more successful at surviving, and reproducing 

than others 

 

4. The survival and reproduction of individuals are not 

random; instead they are tied to the variation among 

individuals. The individuals with the most favorable 

variations, those who are better at surviving and 

reproducing, are selected for. 

4. The individuals that survive and reproduce, 

or reproduce the most, are those with the 

alleles and allelic combinations that best adapt 

them to their environment. 
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Figure 1. Some of the great thinkers in the history of evolution and speciation (from left to right): Charles Darwin 

(1809-1882), Gregor Mendel (1822-1884), Thomas Hunt Morgan (1866-1945) Ernst Walter Mayr (1904-2005, 

Theodosius Grygorovych Dobzhansky (1900-1975). 

 

3.2 Level of selection 
 
A central evolutionary concern is what unit is actually selected (Campbell et al., 1999a; Dawkins, 

1976; Jablonka and Lamb, 2006). There are two general ways of looking at natural selection 

from: the gene's angle and that of the individual. The classical way is focusing on the individual, 

but Dawkins (1976) introduced the gene's view of nature. Dawkins argued that genes and not the 

whole organism is the unit of natural selection. The organisms are just “survival machines” for 

the genes. However, the strictly gene-centered concept of natural selection is maybe also too 

simplistic, and the two ways are probably equivalent (Freeman and Herron, 2004; Jablonka and 

Lamb, 2006). Natural selection acts on phenotypes, but for evolution to occur there must be 

genetic variation that natural selection can act on.  

 

3.3 More than genes?  

 
The phenotype of an individual is traditionally regarded as the summation of two totally 

independent factors: the genes and the environment (Jablonka and Lamb, 2006). However, after 

the introduction of epigenetic variation the separation is less clear. Epigenetic variation is 

inherited variation that is sensitive to environmental input (Jablonka and Lamb, 2006; Lindqvist 

et al., 2007; Richards, 2006). Traditionally, it was believed that inherited information only 

changes at random and without direction towards a particular phenotypic outcome, but recent 
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findings indicate that the environment can affect the genotype (Hoy, 2003). The most well known 

example is transposable elements. Transposable elements are elements (with an RNA or DNA 

intermediate) that can move from site to site in the genome (Hoy, 2003). The activity of the 

elements can be induced by environmental factors, especially stress (Capy et al., 2000). This 

suggests that transposable elements can create new genetic variation that is useful under 

conditions where the fitness of an organism is reduced (Capy et al., 2000; Hoy, 2003). The 

evolutionary significance of epigenetic mechanisms was first discovered in plants where the 

adaptive significance is clear (Jablonka and Lamb, 2006). Plants cannot avoid harsh conditions 

by moving away and epigenetics might allow them to respond in another way (Jablonka and 

Lamb, 2006). 

 

4. Speciation 
 
Despite the title of his book, Darwin devoted little space for the origin of species (Campbell et 

al., 1999a; Coyne, 1994). He concentrated on how populations become adapted to their 

environment through natural selection, but not how this adaption leads to speciation (Campbell et 

al., 1999a; Coyne, 1994). Now, the study of speciation is one of the most active areas of 

evolutionary biology, and progress has been made in documenting and understanding phenomena 

in all aspects of speciation (Turelli et al., 2001). However, there is a fundamental problem in the 

field. It is very difficult to define exactly what “species” is. “It is as if on one hand we know just 

what “species” means, and on the other hand, we have no idea what it means” (Hey, 2001) 

 

The idea of organic discontinuity has a long tradition, beginning with Linnaeus’ classification 

(Coyne, 1994). The clustering of organisms into discrete groups (i.e. species) can be seen both in 

morphology, gene sequences and reproductive compatibility (Turelli et al., 2001). However, 

some biologists argue that the discontinuities are artefacts of human perception (Coyne, 1994), 

and in some groups e.g. in plants and asexually reproductive taxa, it is difficult to separate 

different species (Coyne, 1994; Turelli et al., 2001).  
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But why will organisms cluster into groups separated by gaps? And what properties of sexually 

reproducing organisms and their environment lead to the evolution of discrete species? Two (not 

mutually exclusive) explanations exist: the “ecological explanation” and the “sexual isolation 

explanation” (Coyne and Orr, 2004; Turelli et al., 2001). The ecological explanation states that 

ecological niches are discrete and that the clusters result from the ways different species exploit 

physical resources. Furthermore, disruptive selection (Figure 2D) makes hybrids that “fall 

between niches" less fit. The sexual isolation explanation states that groups will adapt different to 

the environment. Over time the number of differences will increase (divergent evolution) and 

result in the formation of new species (Coyne and Orr, 2004).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Three general modes of selection. A) The original population. B) Stabilizing Selection: Intermediate traits 

are favored by selection, resulting in a decrease in variation. C) Directional Selection: One extreme trait is favored, 

resulting in a change in the mean value of the trait. D) Disruptive Selection: Extreme traits are favored over the 

intermediate trait values, can divide the population into two distinct groups. Disruptive selection plays an important 

role in speciation (http://www.sparknotes.com/). 

A B 

D C 



 16

 
Biological species concept: Emphasizes reproductive isolation. Species are groups 
of actually or potentially interbreeding natural populations that are reproductively 
isolated from other such groups 
 
Cohesion species concept: Focuses on mechanisms that maintain species as 
discrete phenotypic entities. Each species is defined by its complex of genes and set 
of adaptations. Applicable to organisms that reproduce without sex 
 
Ecological species concept: Defines species on the basis of where they live and 
what they do  
 
Evolutionary species concept: A species is a single lineage of ancestral and 
descendant populations that are evolving independently of other such groups. 

 
Genotypic cluster species concept: A species is a (morphologically or genetically) 
distinguishable group of individuals that has few or no intermediates when in 
contact with other such clusters  
 
Morphological species concept: Defined species by measurable anatomical 
differences (morphological criteria). It is practical to apply in the field, even to 
fossils.  
 
Phylogenetic species concept: A species is the smallest monophyletic group of 
common ancestry 
 
Recognition species concept: Emphasizes mating adaption’s that become fixed in a 
population as individuals “recognize” certain characteristics of suitable mates  

4.1 Species concepts 
 
The biological species concept is a classical and widely accepted species concept (Berlocher, 

1998; Campbell et al., 1999b). It defines a species as a group of actually or potentially 

interbreeding populations that are reproductively isolated from other such groups (i.e. they have 

the same gene pool). New species arise when the evolution of reproductive isolation mechanisms 

prevents gene exchange between populations (Turelli et al., 2001, Campbell et al., 1999c). 

Population biologists are discovering more and more cases where the biological species concept 

is not valid e.g. in asexual organism where the concept of breeding does not make sense. That 

results in the development of several other species concepts (Box 1) (Campbell et al., 1999a; 

Coyne, 1994; Coyne and Orr, 2004; Grimaldi and Engel, 2005).  

 
 
Box 1. The biological species concept and some proposed alternatives (Campbell et al., 1999a; Coyne, 1994; Coyne 
and Orr, 2004) 
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4.2 Isolation of populations 
 
Speciation in sexually reproductive organisms is based on the evolution of reproductive barriers 

for the gene flow between populations (Campbell et al., 1999b; Turelli et al., 2001). Barriers can 

occur before mating, between mating and fertilization, or after fertilization (Figure 3). Prezygotic 

barriers occur before fertilization (figure 3) (Campbell et al., 1999b; Coyne and Orr, 2004). A 

common prezygotic barrier is habitat isolation, where a geographical barrier (e.g. flooding) can 

divide a population into several isolated populations (Campbell et al., 1999b) 

 

Postzygotic barriers exercise isolation after 

fertilization (Figure 3; Table 2). The isolation 

can be divided into extrinsic postzygotic and 

instrinsic postzygotic (Campbell et al., 1999b; 

Coyne and Orr, 2004; Turelli et al., 2001). In 

extrinsic postzygotic isolation, hybrids are unfit 

because they “fall between” parental niches as 

they have an intermediate phenotype that is less 

fit (Coyne and Orr, 2004). In intrinsic 

postzygotic isolation, hybrids suffer 

developmental defects that make them unable to 

survive or develop normally (Coyne and Orr, 

2004).  
 
 
Figure 3. The reproductive barriers that prevent gene flow 

between two different species. Prezygotic barriers occurs 

before mating, while postzygotic do after (Campbell et 

al., 1999b).  
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Table 2. Classification of postzygotic reproductive isolation (Coyne and Orr, 2004) 
 
Extrinsic 
 Ecological inviability: Hybrids develop normally but suffer decreased viability, as they cannot find a suitable 

ecological niche 
 Behavioral sterility: Hybrids have normal gametogenesis but suffer lowered effective fertility because they 

cannot find mates. Hybrids might have an intermediate courtship behavior or other phenotypes that render them 
unattractive to individuals of the opposite sex.   

Intrinsic 
 Hybrid inviability: Hybrids have developmental defects causing full or partial inviability. 
 Hybrid sterility: 
  Physiological sterility: Hybrids suffer developmental defects in their reproductive system causing full or 

partial sterility. 
  Behavioral sterility: Hybrids suffer a neurological defect that renders them fully or partially incapable of 

courtship 
 

4.3 Types of speciation  
 
There are two general modes of speciation: allopatric speciation and sympatric speciation (Figure 

4). They are defined by how the gene flow among populations is interrupted. In allopatric 

speciation a geographical barrier physically isolates a population and initially blocks gene flow, 

whereas in sympatric speciation intrinsic factors e.g. chromosomal changes or nonrandom mating 

alter the gene flow.  

 

 
 
 
 

 
 
Figure 4. The two general modes of speciation. Top) allopatric speciation. Bottom) sympatric speciation  

 

4.3.1 Allopatric speciation  
 
In allopatric speciation populations are separated by geographical isolation. In allopatric 

speciation extrinsic factors – as great distance or a physical barrier – prevents two or more groups 

from mating (Campbell et al., 1999b). Physical isolation is an effective barrier to gene flow and 

Mode of speciation  New species formed   
 
 

Allopatric 
allo = other, 
patric = place  
 

 
 

From geographically isolated 
populations 
 

 

Sympatric 
sym = same,  
patric = place 

within the range of the  
ancestral population  
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in many cases it is an important trigger for divergence. When no forces impose reproductive 

capability between isolated populations the populations will, given enough time, become 

incompatible (Turelli et al., 2001). Allopatric speciation is most likely to occur if a small 

population in the periphery of a species’ range gets isolated. The individuals in the periphery are 

often extremes with a gene pool that differs from that of the rest of the population (Campbell et 

al., 1999b; Freeman and Herron, 2004). In a small population random mutations or new 

combinations of existing alleles with neutral adaptive value may get fixed by chance and 

evolution by natural selection may be different than in the parent population (Campbell et al., 

1999b). 

 

4.3.2 Sympatric speciation  
 
Since the nineteenth century it has been debated if speciation requires geographical isolation 

(Berlocher, 1998). The authorities (e.g. Mayr and Dobzhansky) argued that geographic isolation 

is a necessary first step for divergence in animals whereas Guy Bush emphasized ecological 

adaption as an important factor in speciation (Bush, 1998; Feder et al., 2005). Sympatric 

speciation is still questioned and recent analyses show that allopatric speciation is the most 

common mode (Barraclough and Nee, 2001).   

 

Two central factors differ between sympatric and allopatric speciation. Firstly, sympatric 

speciation does not require large-scale geographic distance to reduce gene flow between parts of 

a population (Campbell et al., 1999b; Freeman and Herron, 2004). Instead new species arise 

within the range of the parent population as the result of reproductive barriers between the mutant 

and the parent populations. Secondly, in sympatric speciation gene flow may continue for a 

number of generations after the populations have become separated, whereas complete isolation 

arises between populations evolving in allopatry.  

 

A four stage series has been proposed for sympatric speciation via host plant shift for 

phytophagous insects (Berlocher, 1998): (1) partially reproductively isolated host races (2) 

species isolated only by host fidelity (3) species with partial prezygotic and/or postzygotic 

isolation unrelated to host fidelity and (4) totally reproductively isolated species. 
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4.4 Phylogenetic relationship 
 
Phylogenetic classification is the most useful type 

of systematics (Grimaldi and Engel, 2005). 

Organisms are analyzed and divided into a 

hierarchical pattern (a cladogram or phylogenetic 

tree) based on homologies in behavior, morphology 

or molecular traits (Box 2; Hoy, 2003; 

Schoonhoven et al., 2005)  

 

Phylogenetic classification allows interpretation of evolutionary patterns e.g. explanations for 

creation and termination of lineages (Grimaldi and Engel, 2005). Species can be divided into 

monophyletic, polyphyletic and paraphyletic groups based on the associations of their ancestors 

(Figure 5), however, classification must be strictly monophyletic to have any explanatory power 

(Grimaldi and Engel, 2005).  

 

 

 

 

 

 

 

 

 
 
 
Figure 5. Phylogenetic classification, species are divided into monophyletic, polyphyletic and paraphyletic groups. 

 

Paraphyletic group  

A monophyletic group that excludes 
some of the descendants 

Monophyletic group 

Containing all the descendants of a 
hypothetical common ancestor 

Polyphyletic group  

Containing the descendants of a 
common ancestor that retain shared 
primitive characters, but omitting 
descendants that have lost those 
characters 

Box 2. Classification of characteristics  
(Grimaldi and Engel, 2005; Hoy, 2003) 
 

 

Plesiomorphi: similarities that arose in a 
distant common ancestor (ancestral or 
“primitive”) 
 
Apomorphic: similarities that arose in a 
resent common ancestor (derived or 
“advanced”)
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5. Insects as models in evolution  
 
Insects were among the first animals on land, and the diversity and distribution of now living 

insects is astonishing. With one million species, insect are the most diverse organisms in the 

history of life – both in numbers of species and variety of structures and behaviors (Grimaldi and 

Engel, 2005; Schoonhoven et al., 2005)  

 

5.1 Plant insect interactions  
 

Several hypotheses that explain the diversity of herbivorous insects have been proposed 

(Schoonhoven et al., 2005). One theory is that herbivorous insects and their host plants are 

involved in “an arms race” through reciprocal evolution/co-evolution. The first plants are older 

than the first insects, but the currently largest group of plants – the angiosperms – evolved in the 

Cretaceous period where insects were abundant. It is, however, debated if the plants are affected 

by the herbivorous insects or if the insects just follow the evolution of the plants.  

 

The evolution of host-plant choice can be illustrated with cladograms showing the correlation 

between insect and host-plant phylogenies (Table 3; Schoonhoven et al., 2005). 
 
 
Table 3. Four types of cladogram illustrations of the divergence of existing plant and insect species from their 

ancestors are found. Type B and C suggest polygenetic conservatism – that speciation in herbivorous insects is often 

accompanied by shifts between closely related plant taxa.  

 

Type Insects  Specificity of insects Host plants  Cladogram: Insects                              Plants 

 
 
 

A 

 
 
 

Closely related 

 
 
 

Oligophagous/monophagous 

 
 
 

Distantly related 

    

 

 

 

 
 

 

 

 
 

 

B 

 

 

 

 
 

 

 

 
 

 

Closely related 

 

 

 

 
 

 

 

 
 

 

 

Oligophagous/monophagous 

 
 

Closely related 

    

 
 

 

C 

 

 
 

 

 

 
 

 

 

 

Closely related 

 

 
 

 

 

 
 

 

 

 

Monophagous 

 

 
 

 

 

 
 

 

 

Closely related 

    

 

 

 

 

D 

 

 

 

 

One species  

 

 

 

 

Polyphagous 

 

 

 

 

Distantly related 
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6. Examples of insect evolution and speciation  

 

6.1 Sex pheromones and reproductive isolation in moths 
 
Species-specific sex pheromones can provide reproductive isolation in moths. The specificity of 

the sex pheromone is achieved by specific compounds or by a specific ratio of compounds 

(Hansson, 1995). The pheromone is typically produced and released by the female with males of 

the same species perceiving the pheromone and flying upwind to the female (Karlson and 

Lüscher, 1959; Linn and Roelofs, 1995).  

 

The evolution of the complex pheromones might be the result of the requirement for a distinctive 

signal in an environment where several species use the same or similar compounds (Linn and 

Roelofs, 1989; Löfstedt, 1993). Insects might show varying degrees of specificity depending on 

the contact with closely related species (Linn and Roelofs, 1989; Löfstedt, 1993). 

 

Löfstedt and co-workers examined nine species of the small ermine moth Yponomeuta living 

sympatrically in Europe (Löfstedt and Herrebout, 1988; Löfstedt and Vanderpers, 1985). All 

species had a mixture of (E)-11 and (Z)-11 tetradecenyl acetate as primary pheromone 

compounds. The females produced the compounds in specific ratios, however, some species 

produced the same ratio (Figure 6) (Löfstedt, 1986; Löfstedt et al., 1991). Nevertheless, the range 

did only overlap for species that were isolated by other barriers e.g. lived on different host-plant, 

was temporally separated or had an additional pheromone component. 

 

The pheromone (and the capacity to respond to it) is directly associated with reproductive success 

(Löfstedt, 1986). The female emitting the species specific pheromone blend will be most 

attractive for the majority of males and the males responding to the common pheromone has the 

possibility to mate with most females (Löfstedt, 1986). If there is risk for hybridization, 

additional separation can evolve e.g. the pheromone component from one species act as 

behavioral antagonists to other species (Löfstedt et al., 1991). Pheromone blends can be the 

primary barrier for gene flow and separate populations in sympatry (Linn and Roelofs, 1989; 
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Löfstedt, 1993) or the pheromone can be of secondary importance and isolate populations that 

already are diverged in allopatry (Löfstedt, 1993). 

 

 

 

 

 

 

 

 

 

 
 
  
 
 
 
 
Figure 6. Graphic model of niche separation in the small ermine moth. The pheromone contains a mixture of two 

acetates (Z11 and E11-14:OAc), however the ratio is not species specific. If there is overlap along the Z/E-axis 

additional separation occurs e.g. temporal or spatial (Löfstedt, 1986).  

 

6.2 Drosophila and olfaction  
 
Drosophila is a model insect when speciation is studied. The data from Drosophila are unique – 

and are likely to remain so – because of the large number of crossable species and the ease of 

creating sexual and postzygotic isolation in the laboratory (Coyne and Orr, 1997; Coyne and Orr, 

1989; Dodd, 1989).  

 

D. melanogaster has been used to study how speciation affects the olfactory system (e.g. Dekker 

et al., 2006; Mcbride and Arguello, 2007; Rkha et al., 1991; Stensmyr, 2004). The D. 

melanogaster group contains closely related species occupying widely different niches. In 

addition, the species also display varying food preferences, with species ranging from single host 
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specialists to true generalists (Hoy, 2003). Surprisingly, the olfactory system has to a large extent 

stayed unchanged over evolutionary time (Stensmyr, 2004).  

 

Compared to the pheromone system – which for each insect only includes a few compounds – the 

number of volatiles emitted from fruit and plants is much higher, e.g. 230 different from banana 

(Macku and Jennings, 1987). Still, the insect’s plant odor-detecting olfactory receptor neurons 

(ORNs) can match pheromone ORNs with respect to selectivity and sensitivity (Hansson et al., 

1999; Larsson et al., 2001; Stensmyr et al., 2001). 

 

Stensmyr et al. (2003) demonstrated that D. melanogaster only needs a few key components to 

locate and detect food. D. melanogaster is primarily feeding on rotting fruit; hence the key 

components are general fruit volatiles (e.g. ethyl hexanoate) as well as acetoin which indicate 

microbial activity. Additionally, D. melanogaster detects key volatiles that indicate an unsuitable 

resource that for drosophila are green leaf volatiles like 1-hexanol that signal unripe fruit 

(Stensmyr et al., 2003). 

 

A few species exist where changes in the 

olfactory system has occurred, e.g. D. sechellia 

which has the Morinda citrifolia fruit as its only 

host plant. The morinda fruit has a high acid 

content and is toxic to all Drosphila species 

except for D. sechellia (Rkha et al., 1991). D. 

sechellia has adapted by loss of the olfactory 

receptors that respond to common fruit volatiles 

(ab2) in return for more receptors (ab3) that 

respond to the esters emitted from the Morinda 

fruit (Stensmyr et al., 2003).  

 

Such a specialization can be the adaption to 

changes in the environment. Dodd (1984; 1989) 

demonstrated that one population can be forced to 

Figure 7. Stress full conditions and to populations 

adapting in allpatri can result in two separate species. 

(http://evolution.berkeley.edu/evosite/evohome.html) 
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separate into two, by rearing them under stressful conditions. She divided a population of D. 

pseudoobscura into two groups that were reared on either a starch-based medium or a maltose-

based medium (Dodd, 1984; Dodd, 1989). Both media where stressful and it took the populations 

several months to become established (Dodd, 1984). After adaption, individuals from the 

different groups could no longer reproduce as they were isolated by behavioral barriers (Figure 

7). Hence, the selection for individuals adapted to the food had also affected the genes involved 

in reproductive behavior (Dodd, 1989).  

 

6.3 Rhagoletis and sympatric speciation 
 

6.3.1 The sibling species complex 
 
The Rhagoletis pomonella Wash (Diptera: Tephritidae) sibling species complex is a model 

system for sympatric host race formation and speciation, and often cited as an example of host 

race formation in action (Forbes et al., 2005; Linn et al., 2003; Linn et al., 2005b). R. pomonella 

recently shifted from its ancestral host hawthorn (Crataegus spp) to domesticated apple (Malus 

pumila) which was introduced to the eastern United States in the mid-1800s (Figure 8).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Rhagoletis and its two hosts in the eastern United States: apple (left) and hawthorn (right). 

(http://www.sciencecases.org/maggot_fly/images/emergence.gif). 

 

A third Rhagoletis fly that infests flowering dogwood, Cornus florida L (Cornaceae) has been 

hypothesized to be the sister taxon to R. pomonella. The hawthorn population is presumed to be 

ancestral, thus the dogwood and apple populations have evolved their preferences independently 

(Berlocher, 1999; Berlocher, 2000). 
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6.3.2 Tuned to the natal fruit  
 
Rhagoletis use volatile compounds emitted from the surface of fruit to recognize their host plants 

(Table 4) (Nojima et al., 2003a; Nojima et al., 2003b; Zhang et al., 1999). The majority of 

individuals from a given host population has a strong preference for their natal fruit compared to 

non-natal fruit (Linn  et al., 2003; Linn  et al., 2005; Linn et al., 2004) e.g. the derived apple fly 

race has evolved an increased preference for apple fruit volatiles and decreased the response to 

hawthorn volatiles  (Linn  et al., 2003). However, within each population there is a proportion 

(10%-30%) of broad responders that are attracted both to their natal blend and one or more non-

host blends. This variability in host discrimination is possibly the basis for the sympatric host 

race formation in Rhagoletis (Linn et al., 2005b). Host choice is of evolutionary significance for 

Rhagoletis as they mate on or near the fruit of their respective host plant (Feder and Filchak, 

1999; Linn et al., 2003). Adult flies tend to mate on or near the same species of host fruit as the 

one they infested as larvae. Thus, differences in host preferences can translate into mate choice 

and can act as pre-mating barriers to gene flow (Feder, 1994, 1998, Forbes et al., 2006).  
 
 
Table 4. Key volatiles attracting Rhagoletis pomonella from Dogwood, Hawthorn and Apple (Nojima et al., 2003a; 

Nojima et al., 2003b; Zhang  et al., 1999). 

 

 

 

 

 

 

 

 

 

The attraction to the host blend is antagonized when certain non-host volatiles are added to the 

host blend (Linn et al., 2005a). Especially, the attraction of the apple flies to the apple blend can 

be antagonized by adding key volatiles from hawthorn and dogwood (Figure 9) (Dambroski et 

al., 2005; Linn et al., 2005a).  

Key volatiles from: Flowering dogwood Hawthorn Apple

Chemical % in blend % in blend % in blend
1-Octen-3-ol 9.1
3-Methylbutan-1-ol 27.5 4.0
4,8-dimethyl-1,3(E),7-nonatriene 0.07

-Caryophyllene 5.8
Betyl hexanoate 0.01 37
Butyl butanoate 10
Dihydro- -ionone 0.10
Dimethyl trisulfide 1.9
Ethyl acetate 54.9 94.3
Hexyl butanoate 44
Isoamyl acetate 0.9 1.5
Pentyl hexanoate 5
Propyl hexanoate 4

Rhagoletis pomonella  origin from: Dogwood Hawthorn Apple 
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These findings indicate that the properties of fruit volatiles are similar to the properties of 

pheromones. The male sensory system is highly tuned to the conspecific female – her pheromone 

components are highly attractive while similar pheromone components from other species are 

repellent. In the same way, attractive volatiles from the host plant and the repellent volatiles from 

the non-host plant might increase the ability of Rhagoletis to find its host plant and decrease the 

time spent searching for a host. 

 

Surprisingly, single sensillum recordings revealed that all fly races can detect the same volatiles 

(Olsson et al., 2006a). However, there is variability in the sensitivity and temporal firing of the 

ORNs (Olsson et al., 2006c). The ORNs (both within and between populations) have a breadth of 

variation in sensitivity to all volatiles (Olsson et al., 2006c). The variability in peripheral 

sensitivity might influence host preferences and contribute to host fidelity, but can also be the 

basis for a sympatric host shift. In ancestral populations the variability would provide a greater 

array from which changes in response to blends could emerge and facilitate the acceptance and 

subsequent colonization of a new host. 
 

 
 
Figure 9.  Most individuals from a given host population have a strong preference for their natal fruit blend 

compared to non-natal volatiles. However, the attraction is antagonized when certain non-host volatiles is added to 

the host blend (Adapted from Dambroski et al., 2005). 
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6.3.4 Inheritance of host preferences 
 
Both single-sensillum recordings (Olsson et al., 2006b) and behavioral experiments (Dambroski 

et al., 2005; Linn et al., 2004) show that F1 hybrid flies responded differently to host plant 

volatiles compared to the parent populations. This indicates that fruit odor discrimination has a 

genetic basis (Dambroski et al., 2005; Linn et al., 2004). Since a part of the F2 hybrids mirrored 

the response of the parental flies, host discrimination is regulated by only a few genes 

(Dambroski et al., 2005).  

 

The altered response of the hybrids might be caused by an alteration in the expression of the 

olfactory receptor neurons (Baker et al., 2006; Olsson et al., 2006b). The axon from the olfactory 

neuron targets the glomeruli in the antennal lobe (Anton and Homberg, 1999; Bargmann, 2006; 

Vosshall et al., 2000). The projection is specific; receptors that express the same receptor protein 

convert on the same glomerulus independently of how the receptors are distributed on the 

antenna (Anton and Homberg, 1999; Bargmann, 2006). This construction entails that a simple 

change in receptor expression can lead to a shift in perception of odors i.e. if they are attractive or 

repellent. 

 

In nature, the hybrids have a reduced ability to detect and orient to host fruit (Dambroski et al., 

2005; Linn et al., 2004). This is a fitness disadvantage compared to non-hybrids, as they can not 

locate a suitable host and – as mating is linked to the host – a suitable mate. This might contribute 

to the reproductive isolation of new races in the complex, as host specific mating might serve 

both as a postzygotic and a premating barrier.  

 

6.4 The gall midges 
 
The family Cecidomyiidae (Diptera), the gall midges, contains more than 5000 described species 

(Gagné, 2004). They form galls on almost all plant parts, and are widely distributed among host 

plants (Gagné, 1989). They are of evolutionary interest because of their rapid rate of speciation 

compared to related families of Diptera (Foster et al., 1991). At the generic level, the gall midges 

are often polyphagous – especially in the large genera as Asphondylia and Contarinia. However, 

at species level many gall midges are monophagous or oligophagous (Yukawa et al., 2005). Gall 
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midges are unusual among phytophagous insects as closely related species can be associated with 

different parts of a single host-plant (Gagné, 1989; Joy and Crespi, 2007). 

 

6.4.1 Life-history strategies 
 
The life span of adult midges can be as short as 1-2 h, but is commonly 1-2 days (Harris and 

Foster, 1999). Within this limited time, the midges have to locate a mating partner, mate and the 

females have to locate a suitable oviposition place. 

 

Gall midges have different life-history strategies depending on where and how they overwinter 

(Tokuda and Yukawa, 2007; Yukawa, 2000). Type IA and IB species overwinters as full grown 

larvae in the ground, without or with the gall respectively. Type IIA and IIB overwinters in the 

galls attached to the plant, either as mature or as immature larvae.  

 

 

 
  
 
 
Figure 10. General life cycles for type I gall midges  

 
 
 
 
 

Adults mate where they emerge 

Mated females migrate 

The mature larvae overwinters in the soil, and due to crop rotation 
next years generation might emerge far away from its host plant 

    
 
 
 
 
 
 

The female oviposit on the plants                     And the larvae develop on the plant 
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6.4.2 Gall midge speciation  
 

Speciation of plant-feeding insects is typically associated with host-plant shift followed by 

divergent selection and adaption to the conditions associated with the new plant (Berlocher, 

2000; Funk et al., 2002; Groman and Pellmyr, 2000).  However, there are examples of gall 

midges that speciate without a host plant shift (Joy and Crespi, 2007; Yukawa et al., 2005). 

Instead, speciation occurs when the gall midges associate with new parts of the host-plant e.g. 

move from leaf to stem (Joy and Crespi, 2007; Yukawa et al., 2005). The shift to a new plant part 

does not require as extensive evolutionary changes as the stressful shift to a new host plant (Joy 

and Crespi, 2007). Instead, within-host speciation might be facilitated by change in diapause 

timing and less intraspecific competition for oviposition sites (Joy and Crespi, 2007).       

 

Within-host speciation occurs in type II gall midges. Type II gall midges are closely associated 

with the host plant in all stage of their live cycle, and several generation occurs in the same place. 

In contrast, type I gall midges only live part of their life cycles on the host plant (Figure 10) and 

do not display host specific mating (Readshaw, 1965; Summers, 1975; Thygesen, 1966). After 

overwintering and mating at the emergence site, mated females migrate to the oviposition site on 

the host plant (Readshaw, 1965; Summers, 1975; Thygesen, 1966). For gall midges associated 

with agriculture, the female often have to migrate relatively long distances (due to crop rotation) 

and is then guided by olfactory cues (Birkett et al., 2004; Galanihe and Harris, 1997; Pettersson, 

1976). This is a crucial step in the gall midge lifecycle. The ability of the female to locate a 

suitable place to oviposit determines the survival chances of the offspring. Despite the 

importance of the oviposition choice, gall midges sometimes lay eggs on unfamiliar host plant or 

host plant parts (Larsson and Ekbom, 1995; Larsson and Strong, 1992; Yukawa et al., 2008; 

Åhman, 1981). The survival chance of the larvae is low on the alternative hosts but not always 

zero (Yukawa et al., 2008). The development time of the larvae depends on the properties of the 

host plant and can vary on different plants (Linkosalo, 2000; Mahoro, 2002). That can result in 

temporal isolation of the emerging adults – a possible first step in sympatric speciation (Feder 

and Filchak, 1999). Thus, a possible mechanism for speciation in type II gall midges is a 

combination of oviposition mistakes and variation in the developmental time on different plants. 
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